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Abstract 

 
 

 

Black box and white box testing are used to measure an application. Testing can be complex and 

costly. Various testing techniques can measure multiple parts of an application. This work 

addresses the discussion of black box and white box testing types, utilization of testing and training 

data, data set categorization, implementation of deep learning for automated testing, construction 

of testing approaches, investigation into fundamental techniques and input information, processing 

of detailed test approach information, proposal for assessing automated testing effectiveness, 

utilization of quality attributes, metrics, datasets, and procedures for assessment, and employment 

of evaluation metrics to measure the deep learning approach performance. DeepTestDroid 

performs UI performance testing, which is black box testing. It can predict the density of an 

application's page from its wireframe picture. Higher density means a longer load time. UI 

performance testing can only be performed with human interaction. However, DeepTestDroid 

makes it automatic. To detect density, DeepTestDroid uses MobilenetV3Large. 

MobileNetV3Large was selected after an experimental analysis alongside other image processing 

models and almost 75% of test accuracy was achieved by MobileNetV3Large model, through this 

work. To reduce the usage of different tools for white box testing, XGBRegressor, 

RandomForestRegressor, and DecisionTreeRegressor models were trained and tested to generate 

the values of the application’s UI that the existing testing tool would predict and XGBRegressor 

was able to give the R2 (R-squared) score of 0.96. This project can reduce the cost, time, and step 

of UI performance testing as well as the white box testing. It will also make it easier to complete 

the testing phase of SDLC. This work introduces significant utilities that were not previously 

offered by existing literature. 
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Chapter 1 
 

Introduction 
 

1.1  Background 
 
Black box testing is a powerful testing technique because it exercises a system end-to-end. Just like 

end-users don’t care how a system is coded or architected, and expect to receive an appropriate 

response to their requests, a tester can simulate user activity and see if the system delivers on its 

promises. Along the way, a black box test evaluates all relevant subsystems, including UI/UX, web 

server or application server, database, dependencies, and integrated systems. 

 

By leveraging deep learning, app testing tools can provide more efficiency for development teams 

in the creation and analysis phases of testing through both black-box and white-box testing [1]. 

Black box testing involves testing a system without knowing its internal workings. A tester provides 

input and observes the system-generated output under the test. This makes it possible to identify 

how the system responds to expected and unexpected user actions, its response time, usability 

issues, and reliability issues. White box testing is a technique that uses a program’s internal or 

source code to design different test cases to check the program’s quality; this technique, the internal 

structure, and the implementation of how an application works are known to the tester. Due to the 

rapid release cycle and limited human resources, creating test cases promptly and manually is 

challenging. As a result, numerous automated test input generators have been designed. Tools and 

software already enable us to automatically test apps, including Monkey, Dyno Droid, Espresso, 

etc. The success of an automated test relies on picking the appropriate interaction for a given UI, 

allowing access to new relevant UI states. However, it can be challenging for a machine to interpret 

the GUI and select the appropriate button to click or scroll. Because of this, most automated test 

generators use different types of GUI elements and instead use a random selection or brute force 

to choose which one to test. Human testers are better at this than automated test input generators 

because they can quickly determine which parts of the GUI need to be tested. 
 

 

1.2  Problem Statement and Analysis 
 

Android application’s UI testing is a type of “black box” testing that focuses on ensuring the user 

interface of an application is functioning correctly. The purpose of UI testing is to ensure that the 

application's user interface is intuitive, easy to use, and that load performance is good and 

consistent with the design specifications. For “white box” testing, there are many tools that can 

predict some parameters’ values of an application’s UI. But there is no platform which automates 

and incorporates different tools while using deep learning methods for predicting those values. To 

perform UI testing, the following issues arise which makes the testing difficult to perform to ensure 

the quality of the interface of an Android application. In some cases, UI testing tools and models 

may not be able to adapt to changes in the graphical user interface of an application, leading to 

false positives or false negatives, which means a layout can be categorized as medium density but 

in the updated version of the app, it can be categorized as very-high density. As applications evolve 

and change over time, automated UI tests may need to be updated and maintained to ensure they 

are still relevant and accurate. Manual UI testing requires test data to be maintained and updated 

regularly, which can be time consuming (especially when testing large and complex applications) 

and error-prone. 

 

UI testing tools may have limitations in their ability to interact with certain parts of an application 

or handle certain types of user inputs, which can impact the accuracy and completeness of the 

testing. For example, a UI testing tool may not be able to interact with elements that are 
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dynamically generated or hidden, such as pop-ups or overlays that appear only under certain 

conditions. Test data that are manually classified for the model will have a big impact on the 

prediction of the model, as it might affect the prediction of the model if the classified data are not 

sorted carefully. 

 

Here are our few research questions: 

 

● Which type of black box and white box testing is addressed in our paper?  

o What type of data will we use for testing and training the model? 

o How will we categorize the data set? 

o How will we automate the testing using a deep learning approach? 

● How are the testing approaches built?  

o How will we investigate the fundamental techniques leveraged as well as the amount 

of input information that is required to perform testing? 

o How will we process detailed information on the design and implementation of test 

approaches? 

● How can we measure the effectiveness of our proposed automated testing approach?  

o Which quality attributes, metrics, datasets, and procedures for the m literature can be 

used for measuring the effectiveness of our approach? 

o Which evaluation metrics can be used to measure the performance of the deep 

learning approach? 

 
In order to automate UI testing, first we have to create five categories according to the number of 

components present in the UI layout. Then according to these categories, data needs to be sorted. 

With the sorted data a model needs to be trained. Finally, a platform will be created to perform UI 

testing for android applications which will determine which class the app’s layouts belong to. Then 

a model will be created which will determine the values for white box testing to automate and 

eliminate the need of other existing testing tools. 

 

1.3  Project Objectives 
 

To build a system that predicts test outcomes using deep learning. This paper integrates black-and-

white-box testing with deep understanding, a novel approach. The goal is to automate black-box 

and white-box tests and generate test data for a deep learning algorithm. The objective is to achieve 

the most accurate prediction using the deep learning algorithm, ensuring Android applications' 

durability, vulnerability, and performance. Automated UI testing requires the creation of five 

categories based on the number of components in the UI layout. The data needs to be sorted 

according to these categories. Using the sorted data, a model can be trained. Finally, a platform will 

be developed for UI testing of Android applications, classifying the layouts into their respective 

categories. 

 

Fig 1.1 shows the comparison graph between black box and white box testing in various papers, 

52 papers worked on black box testing versus 14 papers worked on white box testing. No single 

paper incorporated black box and white box testing in their model. 
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Fig 1.1: Comparison Between Black Box and White Box Testing in Various Papers 

 

1.4       Project Contributions 
 

 

Testing an Android application's user interface (UI) is a sort of "black box" testing that focuses on 

making sure the user interface is operating properly. The goal of UI testing is to confirm that the 

user interface of the program is clear and simple to use, and that load performance is satisfactory 

and consistent with the design standards. The following challenges make it challenging to conduct 

UI testing to guarantee the quality of an Android application's user interface. When UI testing 

methods and models are unable to adapt to changes in an application's graphical user interface, 

false positives or false negatives might result, classifying a layout as medium density yet in the 

updated version.  Even the first initiative for white box testing has been taken. 

 

The contributions of this paper are:  

 

1. We must first build five categories based on the number of components in the UI layout in 

order to automate UI testing. The data must then be sorted in accordance with these 

categories.   

2. It is necessary to train a model using the sorted data. Last but not least, a platform will be 

developed to do UI testing for Android applications, identifying the class to which the app's 

layouts belong. Transfer learning, such as EfficientNetB3, ResNet50, and MobileNetV3, 

are used so the model continuously improves. 

3. For white box testing, the model created for this project will generate the values of the 

existing testing tools which will reduce the need for using different testing tools. 

XGBRegressor, LinearRegression, ElasticNet, RandomForestRegressor, 

DecisionTreeRegressor models have been tested in order to determine the best working 

model. 
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1.5  Project Outlines 
 

The remainder of the essay is structured as follows. Section 2 covers the literature reviews, Section 

3 describes the suggested model and its components for testing the UI of the apps, Section 4 shows 

the results and discussion, and Section 5 concludes the study. Fig 1.2 shows the sequence of this 

book. 

 

 

 
 

 

Fig 1.2: Flowchart of this Book 
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Chapter 2 
 

Related Works 

 
2.1 Survey of the State-of-the-art 

Deep Xplore, introduced in a research publication, revolutionizes the systematic testing of real-

world deep learning systems [2]. This system efficiently discovers improper corner case behavior 

in state-of-the-art deep learning models with thousands of neurons trained on popular datasets. 

Deep Xplore generates the wrong test inputs in one second on a laptop. Unlike differential testing 

approaches, deep Xplore detects errors even when profound neural network outputs are consistent. 

Most deep neural networks are designed and trained independently, making it unlikely that all of 

them will commit the same error in practice. 

 

One research study outlines constructing and testing a mobile app-based artificial intelligence 

prototype that mimics user activities [3]. Deep learning predicts screen taps and actions. 

Convolutional neural networks encode visuals and screen elements, while long-short-term memory 

remembers to touch positions on successive screens. Deconvolutional neural networks indicate tap 

location and linear neural networks' action type. The research shows how deep learning can 

automate mobile app testing through model construction and training. More tests are planned to 

improve outcomes. They want to experiment with longer training times, larger datasets, and 

transfer learning to retrain network components before training others. Another option is to share 

learning with a more prominent public dataset before fine-tuning their own. After improving the 

findings, link the network's output to testing software and test its multi-screen navigation. The final 

goal is to train the prototype and utilize it as an automatic input generator for testing. 

 

Another work proposes new testing methods for system faults. The proposed method uses a web 

scraper, ML, and Selenium [4]. Machine learning and Selenium are used to improve web-based 

error detection and discovery. The researchers plan to develop a web testing tool that delivers 

accurate URL test results. They want to provide specialized testing methods for distinct web 

elements and expand test cases to support diverse testing tactics. 

 

Another study automates and scales Android app security and robustness testing. The paper 

introduces an Android-specific software analysis technique that creates several fuzz test scenarios 

[5]. They also offer a cloud-based test infrastructure that runs these test cases on several simulated 

Android devices. This method underlines the need for smartphone-specific guided fuzzing 

strategies rather than brute-force fuzzing. The white-box strategy tries to identify vulnerabilities 

efficiently, decreasing the time and computational resources needed for real-world fuzz testing. 

 

In another study, the authors propose a new Android app testing automation method [6]. Machine 

learning and frequent test situations improve testing. Empirical analysis shows that their improved 

testing tool outperforms conventional methods in natural settings. Activity classifications and 

preset features limit the researchers' approach. They are working with the Test Project R&D team 

to add activity categories and reduce the testing algorithm's reliance on hard-coded test cases. 

Another research study introduces Crash Scope, an automated Android developer tool that creates 

crash reports and test scripts [7]. It gives developers thorough error reports and detects a similar 

number of crashes as other advanced tools. The crash report contains screenshots, steps to 

reproduce the crash, stack traces of exceptions, and a script that can consistently recreate the issue. 

The researchers hope to use model-based GUI testing and static analysis to streamline bug reports 

and improve their systematic exploration method. 
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Humanoid is a new method for automated black-box testing of humanoid Android apps. Deep 

learning generates GUI test inputs from human interactions [8]. A deep neural network model 

accurately predicts application user interactions. This learned model is used to create an Android 

input generator. The input generator is tested on open-source and commercial programs to verify 

real-world dependability and applicability. Humanoid has limits. System broadcasts and sensor 

events are ignored. It also does not predict text input. The researchers propose to enhance the 

interaction model or use alternative text input generation methods to address these constraints. 

 

In a research study, the researchers proposed automating Android app testing to find GUI problems 

[9]. The researchers found existing and undetected system weaknesses, providing vital insights to 

avert future failures. However, limits must be acknowledged. Defects beyond designated activity, 

event, or type categories cannot be detected. Researchers propose a dualistic approach to avoid 

these restrictions. First, they suggest state machines for I/O and concurrency primitive invocations. 

Developers can compare application logs to this model to better spot anomalies. Second, they want 

Java static analysis tools to use model-based verification. This compile-time technique can identify 

pattern and state-machine violations during development, minimizing dependency on automated 

testing and improving system dependability. 

 

A grey literature review on using artificial intelligence (AI) to improve test automation is presented 

in another study [10]. AI is being used to create and enhance test code, according to 136 papers 

found in 1,200 sources. AI-enabled problems and solutions are categorized in the report. Code and 

automated test generation are examples of common issues and solutions. The report also suggests 

adding literature sources and using developer surveys and interviews to corroborate the findings 

on AI in test automation. Traditional and AI-based methods can be compared to assess AI's benefits 

in testing. 

 

Software automation and machine learning (ML) frameworks were extensively explored in the 

paper [11]. Testing tools were rated on test performance, accuracy, scope, time, expertise, and 

manual labor. To improve software quality and ML frameworks for automation software. Future 

studies will examine and organize software testing and machine learning research to help 

researchers and engineers develop guidelines for using ML approaches to software testing. 

 

This case study presents a novel automated testing framework that blends user interaction 

characteristics, historical bug data, and an interest point detector and descriptor to find user 

interaction concerns effectively [12]. This methodology detects user interaction problems 

empirically. The researchers want to create a customized exploration environment to influence 

target application event sequences during testing. Each application's scope will be expanded to 

assess its usefulness and resilience further. 

The researchers created a mechanism to generate tests for Android resource leak problems 

automatically [13]. They propose a resource-efficient, neutral GUI event flow. Their resource leak 

testing method surpasses a non-automated approach from earlier research. The study shows that 

static control flow analysis can automatically develop comprehensive Android GUI tests for 

repeating behaviors. Static or dynamic analysis-based test execution, monitoring, and prioritizing 

methodologies need improvement. 

 

AM-TaaS, a cloud-based automated mobile app testing system, is described in the paper. The 

framework gives users on-demand testing services [14]. Results reveal that framework-designed 

automated test cases tested all emulated devices. Future research will optimize and extend the cloud 

infrastructure, automate more test cases based on specified criteria, build new evaluation methods 

for test cases, and expand the framework to accommodate Windows Phone and iOS. 

 

In the paper, the researchers address the performance degradation of mobile devices due to the 

simultaneous use of multiple mobile applications [15]. They have developed a performance testing 
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tool (PTT) with a user-friendly interface and accurate performance testing results. The plan for 

PTT includes enhancing performance indicators such as electricity and GPU. 

 

The research paper examines model-based testing of Android user interfaces, notably the BBC 

News widget case study [16]. Case study models and tools are open-source. The researchers 

emphasize that although the technology (TEMA) employed still needs to provide automatic tools 

for reverse engineering models, no technical limitations hinder this capacity. The device could 

include a scripting language with keywords or a Robot Framework library. 

 

The research paper presents an innovative method for automating the functional testing of mobile 

software [17]. This method combines machine learning techniques with standard test scenarios for 

effective and practical testing. They demonstrate that their system can perform a significant portion 

of the tasks typically done by human testers, potentially reducing manual testing efforts.  

 

This paper examines a sophisticated Android remote UI testing infrastructure. Developers and 

researchers can test scripts on several Android versions to find bugs across platforms quickly [18]. 

The platform cannot imitate real-world use; therefore, it cannot test applications primarily relying 

on speech, gesture, or movement inputs. Multitouch events and device orientation testing are 

planned to improve the platform.   

 

This paper discusses automated software interface testing, particularly behavior-driven testing, a 

key component of BDD. Behavior-based testing is used for Android app user interface automation 

[19]. Behavior-driven testing involves constant reworking to adapt to environmental changes; 

therefore, upgrading the instrument to enable Cucumber may not be viable for existing products 

with instrumented tests.  

 

A privacy framework in the paper limits undesired permissions and prevents programs from 

collecting user data [20]. The proposed technique uses data mining to identify superfluous 

permissions and modify permission information for privacy and application operation. The 

framework may not work for sealed, protected applications in sectors like finance, which require 

additional protection. The researchers want to strengthen the framework for such applications' 

security and protection procedures. 

In this paper, mobile applications face fragility in GUI testing, as desktop applications are less 

rigorous [21]. This research investigates the dissemination of test classes using common GUI 

Automation Frameworks for Android applications, the extent of changes needed to maintain 

relevance, code turnover, and the fundamental adjustments in the AUT that prompted these 

modifications. The study uses 12 metrics and a classification system to analyze test class 

progression and code turnover. Results show no significant adoption of GUI automation 

frameworks within open-source Android projects hosted on GitHub. However, test suites require 

frequent modifications, with 8% of developers’ modified lines of code involving test code and 50% 

involving changes in the graphical user interface. This may hinder developers' adoption of 

automated testing. Assessing maintenance requirements and categorizing factors that require 

modifications can serve as a standard for software developers and provide a foundation for creating 

practical recommendations and designing automated utilities to address this issue. 

 

Finally, researchers in the paper used Deep Reinforcement Learning (RL) to automate Android app 

exploration [22]. ARES and FATE, their model-based Android testing tools, highlight their 

approach's efficacy. Coverage and problem discovery are better with configuration structures. The 

process may degrade, and system-level events that require rooted devices cannot be performed. 

Android app fault categories and iOS adaptations are planned. The papers propose novel methods 

and frameworks for automating Android application development, addressing constraints, and 

suggesting further study. 
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2.2 Summary 

Table 2.1 summarizes all the papers that have been discussed so far. This table highlights each 

work’s methodology, drawbacks and the solutions that have been addressed in our work. 

 

Table 2.1: Summary of Related Works 

Paper Title Methodology Drawbacks Solution 

DeepXplore: 

Automated Whitebox 

Testing 

of Deep Learning 

Systems 

[2] 

It effectively identifies 

numerous rare edge case 

issues in advanced deep 

learning models 

containing thousands of 

neurons trained on 

widely-used datasets. 

Here, researchers only 

performed white box 

testing. They did not 

test it from the 

interface, which is 

black box testing. 

A deep learning 

approach was 

utilized in 

black-box 

testing to 

determine the 

density of 

Android 

applications' UI. 

Visual GUI testing in 

practice: challenges,  

problems and 

limitations [3] 

This study identified 

four high-level solutions 

and metrics on cost and 

return on investment, 

indicating that VGT is 

valuable, flexible, and 

cost-effective for 

industrial practitioners. 

Study limitations is 

VGT transitions were 

performed on safety-

critical systems with 

legacy code and 

similar characteristics. 

The UI testing 

was done by the 

deep learning 

approach. 

 

A Whitebox Approach 

for Automated Security 

Testing of Android 

Applications on the 

Cloud [4] 

In this paper, researchers 

provide an overview of a 

multi-faceted project 

targeted at automatically 

testing the security and 

robustness of Android 

apps in a scalable 

manner.  

 

They did not 

implement deep 

learning to automate 

testing. Also, they did 

not perform any black 

box testing for security 

testing. 

The 

methodology 

proposes black-

box testing with 

the 

implementation 

of deep learning 

for automating 

Android 

application 

testing. 

Humanoid: A Deep 

Learning-based 

Approach to 

Automated Black-box 

Android App Testing 

[5] 

 

A deep neural network 

model was designed and 

implemented to analyze 

user interactions with an 

app. An Android app 

input generator was also 

developed based on this 

model and evaluated on 

open-source and market 

apps. 

This paper has 

limitations regarding 

including system 

broadcasts and sensor 

events as inputs. 

Furthermore, it does 

not cover white box 

testing or the ability to 

predict text when 

sending text input 

actions. 

In 

DeepTestDroid, 

black-box (UI 

testing) was 

performed with 

a deep-learning 

approach. 
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A Deep Learning Based  

Approach to 

Automated App 

Testing [6] 

Researchers designed 

and implemented an 

artificial intelligence 

prototype that mimics 

real user behavior using 

deep learning and neural 

networks. 

The prototype was not 

trained using 

reinforcement learning 

to identify bugs and 

glitches. 

Here the 

automation was 

done through 

GUI testing of 

apps 

screenshots. 

 

User interface test 

automation for an 

Android application [7] 

This paper evaluates the 

applicability of 

behavior-based testing 

for automated user 

interface testing of an 

android application, 

focusing on Agile 

software development 

and its application in 

Agile software 

development. 

Drawbacks in the use 

of behavior driven 

testing as it requires 

refactoring to keep up-

to-date with changes in 

the environment. 

The interface 

testing is done 

properly by the 

model trained 

with deep 

learning 

approach. 

Automating GUI 

testing for Android 

applications [8] 

Researchers propose an 

automated Android 

application testing 

approach for graphical 

user interface bugs, 

identifying existing and 

new issues, and 

preventing future issues. 

There were some 

limitations such as 

some bugs did not fall 

into the 

activity/event/type 

categories. 

Here android 

apps UI was 

taken for testing 

purpose 

Automation of Android 

Applications Testing  

Using Machine 

Learning Activities 

Classification [9] 

An approach for 

automating Android 

application testing using 

machine learning and 

reusing test scenarios, 

outperforming standard 

methods in realistic 

settings, is presented. 

Limited to the activity 

types and the 

functionalities which 

have been pre-defined. 

Deep learning 

was taken to 

perform black 

box and ML 

approach was 

taken to 

perform white 

box testing. 

An Approach of 

Automated Testing on 

Web Based Platform  

Using Machine 

Learning and Selenium 

[10] 

Their approach trained 

web pages from human 

perception, intelligently 

performing sanity and 

smoke tests on elements, 

and classifying outputs 

as error pages or not 

intended. 

Limitation testing all 

web elements for a 

given URL or testing 

specific web elements 

for specific types. 

Both white box 

and black box 

testing was 

performed. 
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AI-based Test 

Automation: A Grey 

Literature  

Analysis [11] 

This research reviews 

the application of 

artificial intelligence in 

test automation 

procedures, analyzing 

over 1,200 sources and 

identifies six common 

tools and their AI-

enabled solutions, with 

manual code 

development and 

automated test 

generation being the 

most frequently reported 

problems. 

They did not survey 

and interviews with 

developers will 

confirm findings, and 

comparison tests 

between traditional 

and AI-based methods 

to evaluate AI's 

advantages. 

This work  

provides 

solutions that 

are also based 

on area of AI. 

Evaluation of an 

Automated  

Testing Framework: A 

Case Study [12] 

They suggested 

automated testing 

framework using user-

interaction 

characteristics, historical 

bug data, and interest 

points detector for defect 

detection. 

Researchers did not 

create a personalized 

exploration 

environment for better 

control over event-

sequences and 

application scope. 

Both black box 

and white box 

testing was 

automated in 

the platform. 

CrashScope: A 

Practical Tool for 

Automated Testing of 

Android Applications 

[13] 

CrashScope is an 

automated tool for 

Android developers, 

generating crash reports 

and test scripts, 

providing detailed 

information, including 

screenshots, 

reproduction steps, 

exception stack trace, 

and a reliable script. 

Researchers did not 

explore bug report 

reduction using model-

based GUI testing and 

static analysis. 

GUI testing was 

performed by a 

model trained 

by deep 

learning 

approach. 

Automated Mobile 

Testing as a  

Service (AM-TaaS) 

[14] 

This introduces AM-

TaaS framework, 

providing automated 

mobile application 

testing on-demand using 

cloud infrastructure, 

enabling 100% device 

testing using the 

framework's test cases. 

Researchers did not 

optimize cloud 

infrastructure, 

automate test cases, 

develop new 

evaluation techniques, 

and develop 

frameworks for 

Windows Phone and 

iOS platforms. 

DeepTestDroid 

platform can 

automatically 

test wireframes 

including 

android, iOS, 

and windows 

apps. 

Privacy Protection 

Framework for 

Android [15] 

This paper proposes a 

privacy-preserving 

secure framework to 

restrict unnecessary 

permissions, ensuring 

proper functioning and 

user data protection. 

Their approach may 

not work for sealed 

protected 

finance/payments 

applications due to 

additional security, 

preventing installation. 

This platform 

tests the app's 

screenshots to 

find the density 

of it. 



 
 

11 

 

Design and 

Development of 

Android Performance  

Testing Tool [16] 

Mobile performance 

declines due to 

simultaneous application 

usage; less efficient 

testing tools exist; PTT 

offers a strong, attractive 

interface for accurate 

results. 

Increasing some 

performance 

indicators, such as 

electricity, GPU, etc. 

by researchers. 

This work has 

only one 

indicator that 

can increasing 

the performance 

of 

DeepTestDroid 

which is by 

increasing 

categories. 

 Experiences of system-

level model-based GUI  

testing of an android 

application [17] 

This paper discusses 

model-based user 

interface testing of 

Android applications, 

focusing on the BBC 

News widget, using 

open-source models and 

tools. 

TEMA lacks automatic 

reverse-engineering 

tools, but technical 

limitations can prevent 

it. 

Our approach 

was for both 

black box and 

white box 

testing. 

Automation of Android 

Applications 

Functional Testing 

Using Machine 

Learning Activities 

Classification [18] 

Using ML techniques, 

mobile software 

functional testing can be 

automated by reusing 

generic test scenarios. 

The limitation of their 

work is that they 

implement only black-

box testing using 

machine learning. 

Deep 

knowledge was 

incorporated 

into black-box 

testing (UI 

testing) for 

automation. 

 Automated Testing 

with Machine Learning 

Frameworks: A 

Critical Analysis [19] 

This paper analyzes 

machine learning 

frameworks in software 

automation, focusing on 

test performance, 

accuracy, scope, time, 

and knowledge 

requirements while 

measuring manual labor 

effort to ensure excellent 

outcomes and software 

quality. 

The study aims to 

review and organize 

previous work on 

software testing and 

machine learning, 

enabling future 

researchers and 

engineers to create 

rules for ML 

approaches. 

This work 

incorporated 

both deep 

learning and 

ML methods. 

 

Testdroid: automated 

remote UI testing on 

Android [20] 

The platform provides 

test results that help 

developers detect 

potential crashes or 

failures in different 

media. 

The testing limitations 

arise when evaluating 

applications that rely 

on voice, gesture, or 

movement input, 

making it challenging 

to simulate the actual 

use context. 

In the 

paperwork, data 

on human 

interaction will 

be collected and 

analyzed to 

generate test 

inputs, aiming 

to avoid any 

simulation 

problems. 
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Scripted GUI testing of 

Android open-source 

apps: evolution of test 

code and fragility 

causes [21] 

“Grounded Theory” 

methodology was used 

for manual analysis of 

differential files for test 

classes, aiming to create 

a comprehensive 

classification system for 

this paper. 

The type of 

investigated open-

source app was not 

considered as a factor. 

Open-source 

apps wireframes 

were tested in 

the paper. 

Automated Test 

Generation for 

Detection of Leaks in 

Android Applications 

[22] 

Researchers have 

developed an automated 

method for finding 

resource leak bugs in 

Android applications 

using a neutral flow of 

GUI events. The 

experimental analysis 

supports the use of these 

methodologies for 

efficient, broad, and 

automated tests. 

Automatically 

generate tests for 

recurring behaviors in 

Android GUIs using 

static control-flow 

analysis. Improve 

execution and 

monitoring, develop 

test prioritization 

strategies, and 

automate major leak 

detection. 

This platform 

automates 

testing which is 

trained by deep 

learning and 

ML approach. 
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Chapter 3 
 

Materials and Method 
3.1 Materials 

In order to train the model for the black-box testing datasets, TensorFlow, Python, Kaggle, and 

Rico, mobile app datasets for building data-driven design applications, were used. 

 
● TensorFlow is an open-source framework developed by Google primarily for deep learning 

applications. It also supports traditional machine learning. We used tensor flow for the pre-

training model. 

● Python is commonly used for developing websites and software, task automation, data 

analysis, and data visualization. We used Python because it is familiar to us and easy to use. 

● Jupyter Notebook is for sharing computational documents and creating original web 

applications. We used it to handle the code easily so that it could show the output quickly. 

● Kaggle Notebook is a cloud-computed notebook used for codes that are computed on their 

cloud servers. We used it because it is faster than Google Collab and easy to train the model. 

● Django used for making a web application using our model. It takes image and view types 

from frontend and processes them for black box and takes input data for the white box. 

● Tailwind and DaisyUI are helping us to make beautiful frontends. 

● Ajax sits between the frontend and the backend. Maintaining the UX is better. It is sending 

images and other data to the backend. Then, when the backend sends the processed result, It 

implements the result on the frontend without a refresh or extra request. 

 

3.1.1 Dataset Collection 

The dataset used in this study is called Rico. Mining Android applications created Rico while it 

was running, using a combination of programmed and manual investigation [21]. The infrastructure 

used for app mining in Rico does not require access to or modification of an app's source code. 

Crowd workers accessed the applications through a web interface after downloading them from the 

Google Play Store. The dataset includes photographs and hierarchies with semantic annotations for 

Android applications' UI. For Whitebox testing, we considered 22 classes with 17713 data numeric 

data. And we collected the data from Scripted GUI testing of Android open-source apps: evolution 

of test code and fragility causes. The data is divided into six files. Because it was created using six 

testing tools. These six testing tools were performed testing on the open-source application and 

then recorded data to see the change ratio between app versions. 

 

3.1.2 Dataset Exploration 

Rico dataset consists of over 66,000 UI screens and hierarchies, with semantic annotations that 

describe the meaning and usage of elements on the screen [23]. These annotations provide insights 

into what different UI components, buttons, and icons signify. Semantic screenshots in Rico utilize 

a distinctive color scheme, where each class is assigned a unique color. The mapping between 

semantic concepts and their corresponding colors is documented in three files known as 

"component_legend.json,” which correspond to specific component categories. For this study, 

approximately 60,600 datasets were available. The datasets were sorted according to the 

categorized UI screenshots of the apps. The sorting technique employed is known as 

“crowdsourcing.” 

Below Fig 3.1 are user interface displays from the dataset and their respective semantic annotations. 
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Fig 3.1: Screenshot of RICO Dataset 

 

The class we considered for white box testing in the project is shown in the Table 3.1. In the left 

column, these are the short form of classes for input and output and in the right column is the 

explanation for understanding the classes.   

 

Table 3.1: List of Classes 

Class Explanation 

Plocs Number of lines of code in the Project 

Mod. Plocs Modified line of code in the project 

Tlocs Total line of code of selected class file 

Mod. Tlocs Modified line of code on Tlocs 

Classes Number of classes in the project 

Added Classes Number of added classes from the previous version 

Deleted Classes Number of deleted classes from the previous version 

Mod. Classes Number of Modified Class 

Methods Total Methods of the Classes 

Added Methods New added method from the previous version 

Deleted Methods Deleted method from the previous version 

Mod. Methods The modified method from the previous version 

Classes with Mod. Methods Number of classes with the modified method 

TLR Test LOCs Ratio 

MTRL Modified Test LOCs Ratio 

MRTL Modified Relative Test LOCs 

TMR Total Method Ratio 

MMR Modified Method Ratio 

Tool Tool to perform the testing 

 

3.1.3 Dataset Sampling 

A UI was designed to facilitate sorting datasets based on categories. This UI feature is for managing 

and organizing datasets. Sorting datasets based on categories can greatly improve the user 

experience and make it easier for users to find and analyze specific data. It provides a clear structure 

to the dataset. It reduced the likelihood of errors that may occur during manual data sorting or when 

using complex commands. The automated process ensures accurate data organization, minimizing 

potential mistakes that could arise from manual intervention. Semantic annotations provide 

meaningful labels and metadata to categories, enabling users to comprehend the content and 

context of each data group effortlessly. This, in turn, expedites data retrieval, making it easier for 

users to find relevant information quickly. By capturing the inherent meaning and semantics of 

categories, users can perform advanced queries and filtering operations with greater precision. This 
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capability enables users to uncover deeper insights and identify patterns that might be challenging 

to detect using conventional sorting methods. 

In Fig 3.2, these are the sample wireframes for black box testing. These are different wireframes 

of different applications from component range low to high sequentially. 

 

 
 

 
  

 

Fig 3.2: Data Sample for Black Box Testing 

 

We merge all data from six files and then assign each row with its corresponding testing tools. 

Then we remove blank data. And gave all non-numeric data a value. So, we can create the model 

from it more easily. After more preprocessing, we applied machine learning data. Below Table 3.2 

represents a sample dataset for white box testing, where the first 14 data are the input data, and last 

8 data, which are colored, are the output data. 

 

Table 3.2: Dataset Sample for White Box Testing 

 

Plocs 1899 1899 20159 67267 

Mod. Plocs 58 58 5021 7121 

Tlocs 471 471 1746 1265 

Mod. Tlocs 6 6 100 77 

Classes 1 1 11 11 

Added Classes 0 0 0 5 

Deleted Classes 0 0 0 0 

Mod. Classes 1 1 3 4 

Methods 17 17 98 62 

Added Methods 0 0 1 27 

Deleted Methods 0 0 0 0 

Mod. Methods 3 3 12 2 

Classes with Mod. 

Methods 
1 1 2 2 

Tool uiautomator espresso robolectric robotium 

TLR 0.248025 0.248025 0.086611 0.018806 

MTRL 0.012739 0.012739 0.05787 0.103914 

MRTL 0.103448 0.103448 0.019916 0.010813 

TMR 0.416209 0.416209 0.220071 0.959082 

MCR 1 1 0.272727 0.666667 
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MMR 0.176471 0.176471 0.123711 0.057143 

RFCR 1 1 0.666667 0.5 

FCR 1 1 0.181818 0.333333 

 

3.1.4 Dataset Processing 

JSON files of the layouts were utilized to generate data, which was then classified into five density 

categories based on the number of components present in the UI. 

 

Fig 3.3 shows the flowchart of dataset preprocessing for black box testing where a png file has the 

corresponding json file and then from the json file, the number of components gets extracted and 

classify the image according to it. 

 

 
 

Fig 3.3: Dataset Preprocess of Black Box Testing 
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Table 3.3: Density Class Example 

 

Compone

nt Range 

1-6 7-11 12-18 19-30 31-60 

Density Very low Low Medium High Very high 

Screensh

ots 

     

 

Table 3.3 shows the component range and their corresponding density type and screenshots. The 

component range was created based on the number of components presented in a wireframe. Then 

each component was named by the density type and with the screenshots examples. Multiple 

methodologies were employed to sort the data, but the final sorting method was chosen based on 

its reliability compared to other methods. 

 

For Whitebox, all the data is processed by MS Excel, pandas, and sklearn. There are ‘-’ on data. It 

represented no change had been on the version or value cannot be calculated. So, we changed those 

using -1. The number of blank rows was meager. So, we just deleted the blank row. Fig 3.4 shows 

the altered dataset, and each where Plocs, Mod. Plocs, Tlocs, Mod.Tlocs, Classes, Added Classes, 

Deleted Classes, Mod. Classes, Methods, Added Methods, Deleted Methods, Mod. Methods, 

Classes with Mod. Methods, tool are the 14-input metrics and  TLR, MTRL, MRTL, TMR, MMR 

are the 8-output metrics. 
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Fig 3.4: Before and After of the Dataset Alteration 

 

Fig 3.5 for white box testing, first, it starts with two sets of data: data from the test inputs and data 

from the test results. Then combining these two sets of data into a single set of data that matches 

input data with results. After merging, changing every '-' in the dataset with a '-1'. This step is meant 

to handle values that are lost or can't be found. After that, getting rid of any data points that are 

blank or empty. This cleaning step makes sure that the file only has information that is useful. 

Lastly changing all the remaining data in the dataset to a consistent type, especially to floating-

point numbers. This step makes sure that the data is in the same format, so it can be analyzed or 

processed further. 
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Fig 3.5: Dataset Preprocess of White Box Testing 

 

 

3.1.5 Research Environment and Devices 

A UI was designed to facilitate sorting datasets based on categories. Here is a screenshot of the UI. 

 

 
 

Fig 3.6: Tools for Data Sorting 

In Fig 3.6, the user has to set the directory path of the directory that the semantics annotations are 

in. Then along with the wireframe, corresponding screenshot of the wireframe will also be loaded 

and then the user can either select the density class just by looking at the congestions in the 

wireframe or go to the next png file or delete the current png file. After selecting the density four 

folders will be created which will be named dense 1, dense 2, dense 3, dense 4 and then finally the 

density class that the user clicked only the wireframe will be stored in the corresponding folder to 

it of the selected density class. 

 

3.2 Method 

In this project, for black box testing, six models have been trained and analyzed to see which model 

performs better to determine the density of applications’ screenshots. For white box testing, a 
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model has been created which can automatically predict and generate the values of the tools such 

as Robolectric. 

 

3.2.1 Proposed Model 

The proposed "DeepTestDroid" model was designed to address the mentioned problems and 

perform UI testing using a deep learning approach. The implementation of the model utilized 

MobileNetV3, ResNet50, EfficientNet_b0, EfficientNet_b1, and EfficientNetV2_b0 neural 

networks for black box testing. Python was used for the performance, and specific libraries were 

employed to handle the app layouts based on the created categories. And for white box testing 

XGBRegressor, LinearRegression, ElasticNet, RandomForestRegressor, DecisionTreeRegressor 

model has been trained and tested to see their performance. 

 

MobileNetV3 is a convolutional neural network architecture widely adopted in various mobile 

applications, including TensorFlow [24]. It offered the capability to run on embedded systems and 

was implemented in small and large versions. We used MobileNetV3small and MobileNetV3large. 

 

 
Fig 3.7: MobileNet Architecture 

 

In the above Fig 3.7 the mobile net architecture is shown, where the input of the model was checked 

by expansion convolutional, and the depth wise projection layer will be detected. The 1×1 

expansion block is the core building block of the model. Depthwise separable convolution block 

significantly reduces computation and parameters while maintaining performance. The SE module 

block interacts with depthwise separable convolution and projection layer block. The projection 

layer further transforms the feature maps, projects them into a new space, and generates the output. 

 

ResNet50 is a state-of-the-art convolutional neural network model for image classification. It was 

trained on ImageNet, a large-scale classification dataset [25]. 
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Fig 3.8: ResNet Architecture 

 

In the above Fig 3.8 the ResNet architecture is shown whereas after giving the input there will be 

checking by zero padding and step by step work after that the output will be average pooling.  

 

EfficientNet_b0 is another convolutional neural network architecture trained on a vast dataset from 

the ImageNet database [26]. It can classify images into one thousand object categories, including 

various objects and animals. 

 

EfficientNet_b1 is a scalable convolutional neural network architecture that uniformly scales 

dimensions using a compound coefficient [27]. 

 

EfficientNetV2_b0 is a convolutional neural network architecture that performs highly on image 

classification tasks while maintaining parameters and computational cost efficiency [28]. 
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Fig 3.9: EfficientNet Architecture 

 

In Fig 3.9, EfficientNet employs a structural component known as the "Efficient Block," which 

integrates depthwise separable convolutions with inverted residual connections, akin to the 

architectural design of MobileNetV2. These blocks are designed to maximize the balance between 

the size of the model and its performance. The concept of depth scaling pertains to the manipulation 

of the network's layer count, whereas width scaling involves modifying the number of channels 

within each layer. Additionally, resolution scaling entails the alteration of the input image 

dimensions. 

 
For the white box, we can use the ML model. We tested out five models, XGBRegressor, 

LinearRegression, ElasticNet, RandomForestRegressor, DecisionTreeRegressor and among them 

XGBRegressor, DecisionTreeRegressor and RandomForestRegressor gave the best result. We used 

these models by sklearn python learn. 

 
XGBRegressor is a highly effective machine learning model for regression tasks [29]. It is a 

member of the XGBoost (Extreme Gradient Boosting) family of ensemble learning algorithms, 

which are renowned for their high predictive accuracy and efficient performance. XGBRegressor 

is designed to manage regression problems in which it is necessary to predict continuous numerical 

values. 
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Fig 3.10: XGBoost Architecture 

 

Fig 3.10 shows the architecture of XGBoost, using decision trees as the base learners. These 

decision trees are known as CART, which stands for Classification and Regression Trees. 

 

In the fields of ML and data analysis LinearRegression is a standard and useful statistical method 

[30]. To predict continuous numerical values from input features, this supervised learning approach 

is employed. The model presupposes that the input variables have a linear connection with the 

outcome variable. Finding the line that minimizes the error between predicted and target values is 

the purpose of Linear Regression. 

 
 

Fig 3.11: LinearRegression Architecture 
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Fig 3.11 shows the architecture of LinearRegression architecture. Decision Trees and Linear 

Regression are widely used in predictive modeling to determine patterns and correlations between 

input data and target variables. Linear regression uses linear equations, while decision trees have 

hierarchical structures with core nodes indicating decisions and leaf nodes reflecting predictions. 

These strategies are based on criterion-based data splitting and feature values. 

 

Ridge regularization approaches are frequently employed in machine learning and statistics for 

applications such as regression and feature selection [31]. By balancing feature selection and 

regularization, the ElasticNet model addresses some of the shortcomings of Lasso and Ridge 

regression. 

 

 
 

Fig 3.12: ElasticNet Architecture 

 

Fig 3.12 represents the architecture of ElasticNet. CNN feature extraction relies on the 

convolutional layer to filter incoming data to find patterns, edges, and textures. The output layer 

predicts these properties using fully connected layers. The loss function measures the gap between 

expected outputs and target values, driving network learning. Image or segmentation regression 

tasks use Mean Squared Error (MSE) as a loss function. Final loss is the cumulative value of the 

specified loss function utilizing anticipated outputs and ground truth values. 

 

RandomForestRegressor is a strong ML model from the ensemble learning family. The 

RandomForestRegressor algorithm combines the predictions of different decision tree models [32]. 

Each decision tree is trained using a random subset of the training data and features. When 

compared to individual decision trees, the randomness and variety in the training process make the 

model more resilient and less prone to overfitting. 
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Fig 3.13: RandomForestRegressor Architecture 

 

In the above Fig 3.13 it shows the RandomForestRegressor is a strong ML model from the 

ensemble learning family. The RandomForestRegressor algorithm combines the predictions of 

different decision tree models. Each decision tree is trained using a random subset of the training 

data and features. 

 

DecisionTreeRegressor is a regression-based supervised machine learning model [33]. It is a 

decision tree method, which means that it divides the feature space into regions and makes 

predictions based on the average or mean of the target variable within each zone. 

 

 
 

Fig 3.14: DecisionTreeRegressor Architecture 
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In this Fig 3.14 it shows the DecisionTreeRegressor is a regression-based supervised machine 

learning model. It is a decision tree method, which means that it divides the feature space into 

regions and makes predictions based on the average or mean of the target variable within each 

zone. Here the output of two tree predictions is given by n number of trees which will be the final 

prediction. 

 

3.2.2 Experiment Setup 

We used multiple models in this project. and a few models used for image and other with numeric 

value. To get the best accuracy out of the models we fine-tune hyperparameters. Below, Table 3.4  

shows the configuration used for black box testing’s model training. 

 

Table 3.4: Configuration of Black Box Testing 

Hyperparameters  Value(s) 

Image Size 224 x 224 x 3 

Class Mode Categorical 

Transfer Learning Weights ImageNet 

Validation Split 20% 

Pooling Max-Pooling 

Activation 
Hidden Layers ReLu 

Output Layer Softmax 

Optimizer Adam 

Loss CategoricalCrossentropy 

Epoch 100 

Batch size 32 

 

Fig 3.15 below shows the model configuration we used for all the models we trained and tested 

for black box testing. 
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Fig 3.15: Model Configuration of Black Box Testing 

And for the white box, test split, max depth and data type are hyperparameters. Here, the test split 

is 30%, max depth is 8 and data type is float. All of the corresponding models have been trained 

with the same settings. 
 

3.2.3 Algorithm/Model Formulation 
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Machine learning and deep learning are part of Artificial intelligence. However, the way both works 

is different. Machine learning makes decisions about what it learns based on given data. On the 

other hand, deep learning makes a layer from the given data and then makes its own decision based 

on that layer. Deep learning is most of the time used for image-type data. Where machine learning 

works with numeric data, in this project, we have to use both of them because of our dataset. For 

Whitebox, we had numeric data, so we chose machine learning. Furthermore, for the black box, 

we had image-type data. Data had to be preprocessed for both black box and white box testing 

before training the model. 

 

Algorithm: For Blackbox, after experimenting with a few models, we had the best accuracy with 

MobileNetV3Large. So, we implement the model in our final product. We take the wireframe 

screenshot and the view type from the user. Then resize the screenshot into a 224 x 224 numpy 

array. Then predict the dense class through the model. Then we gave suggestions based on view 

type and the dense class. 

 

 
 

Fig 3.16: Model Creation Flowchart for Black Box Testing 

 

For black box testing, the first step of the model creation is collecting the data. The second step is 

classifying the data and sorting it according to the classification. The third step is pre-training the 

model. Image class identity step is essential for both the second step and final step which is model 

training. Fig 3.16 summarizes all the steps. 

 

We experimented with a few models for the white box too. Then we had the highest R2 score with 

XGBoostRegressor. So, we used this model in our final product. We take a series of code 

information alongside which testing tools it may use. Then we convert all the data into a float list. 

Then through the model, we generate TLR, MTRL, MRTL, TMR, MCR, MMR, RFCR and FCR. 
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Fig 3.17: Model Creation Flowchart for White Box Testing 

 

For white box testing, the first step is collecting data. The second step is merging all data from six 

files and assigning each row with its corresponding testing tools. The third step is processing the 

data after alteration that has been discussed in section 3.1.4 and finally in the last step, training the 

model with the processed data Fig 3.17 highlights all the steps. 

 

3.2.4 Obtained Results of Models 

This study for black box testing shows the comparison among six models, MobileNetV3Large, 

MobileNetV3Small, EfficientNetB0, EfficientNetB1, EfficientNetV2B0 and ResNET50 models. 

And for white box testing, comparison between five models, XGBRegressor, LinearRegression, 

ElasticNet, RandomForestRegressor and DecisionTreeRegressor. 

Table 3.5: Results of the Models of Black Box Testing 

 

Name 

Test 
Validation 

Accuracy 

Train 

Accuracy Loss Accuracy 

MobileNetV3Lar

ge 
0.898 0.746 0.735 0.778 

MobileNetV3Sma

ll 
0.980 0.687 0.681 0.661 

EfficientNetB0 0.923 0.712 0.711 0.688 

EfficientNetB1 1.003 0.627 0.628 0.611 

EfficientNetV2B0 0.942 0.688 0.715 0.642 
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ResNET50 1.081 0.624 0.596 0.584 

 

In Table 3.5, the ResNet50 model demonstrated the greatest test loss, while the MobileNetV3Large 

model attained the lowest test loss. The RestNet50 model had the lowest test precision, while the 

MobileNetV3Large model achieved the highest. ResNet50 performed poorly on the dataset 

compared to other models evaluated, while MobileNetV3Large performed the best. Despite the 

fact that all models were trained on the ImageNet dataset, disparities in architecture led to varying 

data outcomes. 

Table 3.6: Results of the Models of White Box Testing 

 

 

Name 

 

MSE 

 

R2 Score 

XGBRegressor 0.212 0.958 

ElasticNet 0.910 0.123 

LinearRegression 0.881 0.192 

RandomForestRegressor 0.396 0.873 

DecisionTreeRegressor 0.514 0.837 

 

In Table 3.6, the R2 score of XGBRegressor, RandomForestRegressor and DecisionTreeRegressor 

models performed better than ElasticNet and LinearRegression model as we can see there is a huge 

difference in the scores. Also, all three regressor models have lower MSE compared to the other 

two models. So, XGBRegressor model’s overall performance is better than both 

RandomForestRegressor and  DecisionTreeRegressor. 

 

3.2.5 Analysis of Models 

In this study, every model was trained with various configurations, classes, and datasets, and for 

the final evaluation, a consistent design, classes, and datasets were used to effectively evaluate all 

models. 10,000 data points out of the available 60,600 semantic annotations were used to validate 

the model. 

 

 

Fig 3.18: MobileNetV3Large Results 

Fig 3.18 shows the average training and validation curves for loss and accuracy for 

MobileNetV3Large. The model performs well on testing and validation data, as we can see no 

difference between training loss and validation loss. 
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Fig 3.19: MobileNetV3Small Results 

Fig 3.19 shows the average training and validation curves for loss and accuracy for 

MobileNetV3Small. This model’s performance is poor as there is a big gap between the training 

and validation loss. 

 

 

Fig 3.20: EfficientNetB0 Results 

Fig 3.20 shows the average training and validation curves for accuracy and loss for EffecientNetB0. 

The model performs better than MobileNetV3Small as the big gap between the training and 

validation loss is lesser than the MobileNetV3Small. 

 

 

Fig 3.21: EfficientNetB1 Results 

Fig 3.21 shows the average training and validation curves for accuracy and loss for EffecientNetB1. 

The model performs poorer than EfficientNetB0 as the big gap between the training and validation 

loss is wider than the EfficientNetB0. 
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Fig 3.22: EfficientNetV2B0 Results 

Fig 3.22 shows the average training and validation curves for accuracy and loss for EffecientNetB1. 

The model performs better than EfficientNetB1 as the big gap between the training and validation 

loss is lesser than the EfficientNetB1. 

 

 

Fig 3.23: ResNET50 Results 

Fig 3.23 shows the average training and validation curve for loss and accuracy for ResNET50. The 

model didn't perform well on validation data from the loss curve, as there is a huge gap between 

training and validation loss. 

 

3.2.6 Performance Analysis of Models 

Multiple deep-learning models were experimented with, including variations that were 

significantly different from each other. All models were trained using the same configuration, 

classes, and data. The results from the experiments can be observed in the provided Table or 

diagram. 

 

The highest test loss was observed in the ResNet50 model, while the lowest test loss was achieved 

by the MobileNetV3Large model. The RestNet50 model had the most insufficient test accuracy, 

whereas the MobileNetV3Large model reached the highest. Among the tested models, ResNet50 

performed poorly on the dataset, while MobileNetV3Large emerged as the best-performing model. 

Although all models were trained on the ImageNet dataset, variations in architecture led to 

differences in data outcomes which can be seen in Fig 3.24. 
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Fig 3.24: Result Comparison of Black Box Testing 

In white box testing, we can see that among XGBRegressor, LinearRegression, ElasticNet, 

RandomForestRegressor, DecisionTreeRegressor; XGBRegressor, RandomForestRegressor, and 

DecisionTreeRegressor models performed the best because their R2 score is higher and MSE score 

is lower than other models. The LinearRegression model did not perform well because the dataset 

and the output are not linear. As, XGBRegressor model has the highest R2 score and lowest MSE, 

it is the best fit out of them all which can be seen in Fig 3.25. 

 

 
 

Fig 3.25: Result Comparison of White Box Testing 
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3.2.7 Design/Framework 

 

In this project, there are two-part Whitebox and Blackbox. For Blackbox, we upload images and 

then select the view type. Then the image goes through the trained mobileNetV3Large model and 

classifies its denseness. After classifying, we manually suggest according to the view type and 

dense class. Fig 3.26 gives a visual representation of the workflow of it. 

 

 
 

Fig 3.26: Workflow of the Black Box Testing 

 

For the Whitebox, we take the code information and then send that information to the 

XGBoostRegressor to process. After processing data, the model produces metrics value according 

to the tool which has been represented in Fig 3.27. 

 

 
 

Fig 3.27: Workflow of the White Box Testing 
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3.3 Summary 

Rico, a dataset for mining Android applications produced through a combination of programmed 

and manual investigation, is utilized in this study. The infrastructure for app mining in Rico does 

not require access to the source code, and crowd workers download applications from the Google 

Play Store and access them via a web interface. The dataset contains images and hierarchies with 

semantic annotations for Android application user interfaces. Whitebox testing consists of 22 

classes with 17713 numeric data, gathered from scripted GUI testing of Android open-source 

applications. Data is divided into six files, and JSON layout classification files are generated. The 

final sifting technique was selected due to its dependability. The Deep learning-based 

"DeepTestDroid" model was designed to address these issues and conduct UI testing. The 

performance of the model is determined by MobileNetV3, ResNet50, EfficientNet_b0, 

EfficientNet_b1, and EfficientNetV2_b0 neural networks and Python. For white box testing, the 

XGBRegressor, LinearRegression, ElasticNet, RandomForestRegressor, and 

DecisionTreeRegressor models were trained and evaluated. ResNet50 had the highest test loss and 

lowest test accuracy, while MobileNetV3Large had the best. Deep learning black box testing and 

white box testing are used to test app density UI screenshots. The XGBRegressor model provided 

the best fit due to its higher R2 score and lower MSE, indicating its superior overall efficacy. These 

models are trained on ImageNet, but architecture affects data results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

36 

 

Chapter 4 
 

          Results and Discussion 
 

4.1 Project Prototype 

 
The prototype is an early version of a final product. We created a website as our prototype to prove 

the motivation of this project [34]. We used Django as a web framework. We chose Django because 

it utilizes Python for its instruction. Our model was created using Python, giving much more 

flexibility than many other frameworks. We also used sklearn, tensorflow, keras, numpy, pandas 

and many more libraries for this project. We use Tailwind and daisyUI for the front end and Ajax 

for passing the value between the front and back end. Our website has two sections, a black box, 

and a white box. In the black box section, we have an image input field and a view type radio button 

to select the view type. After selecting the image and type, input data will pass to the backend if 

the user presses the process button. Then the suggestion and the message were sent to the frontend 

from the backend. For the white box tab, we have a dropdown of the testing tools and 14 number 

input field. After submitting the field, the generated value will be on the window's right side. Fig 

4.1 and Fig 4.2 is the UI of the website which has been built for user to perform the black box as 

well as the white box testing in the same platform. The UI has been designed to make it as user 

friendly as possible. 

 

 
 

 

Fig 4.1: Frontend of the Black Box Testing 
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Fig 4.2:  Frontend of the White Box Testing 
 
 

4.2 Obtained Results 

To test the prototype, both black box and white box testing have been performed. For black box 

testing, the MobileNetV3Large model and the XGBRegressor model have been chosen based on 

their performance, which has been elaborated in Chapter 3. 

 

In Table 4.1 every screenshot of wireframe is the input. The same input images were evaluated 

against multiple category types which is Signup/Login, E-commerce/Shop, Map/Camera, Social 

Media/Gallery and Other which will be selected by the user. The output of each input image has 

been represented from the second to the last column. The second column represents the density 

class, which can be very low, low, medium, high, or very high, as determined by our model. Then 

different suggestions for each signup or login, e-commerce or shop, map or camera, social media 

or gallery, and other categories have been generated manually, which are shown from the third 

column to the last for each input image. 

 

Table 4.1: Results of Black Box Testing 

Input Images 
Density 

Class 

Signup/Logi

n 

Suggestion 

E-

commerce/Sho

p 

Suggestion 

Map/Camer

a 

Suggestion 

Social 

Media/Galler

y 

Suggestion 

Other 

Suggestion 

 

Very 

High 

Reducing 

Element 

Will be 

better 

View is Fine 

Reducing 

Element 

Will be 

better 

Reducing 

Element 

Will be 

better 

Reducing 

Element 

Will be 

better 
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Low 
View is 

Great 

You can Add 

more 

elements 

View is 

Great 
View is Fine 

If the 

purpose 

of the 

view is 

showing 

data, then 

adding 

more 

elements 

will be 

good. 

otherwise

, fine. 

 

Very 

High 

Reducing 

Element 

Will be 

better 

View is Fine 

Reducing 

Element 

Will be 

better 

Reducing 

Element 

Will be 

better 

Reducing 

Element 

Will be 

better 

 

High 

Reducing 

Element 

Will be 

better 

View is Fine 

Reducing 

Element 

Will be 

better 

View is Fine 

If it’s a 

landing 

page, then 

reducing 

the 

element 

will be 

better. 

Otherwise

, fine 

 

Low 
View is 

Great 

You can Add 

more element 

View is 

Great 
View is Fine 

If the 

purpose 

of the 

view is 

showing 

data, then 

adding 

more 

elements 

will be 

good. 

otherwise

, fine. 
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Very 

Low 

View is 

Great 

You can Add 

more 

elements 

View is 

Fine 

You can add 

more 

element 

If the 

View has 

lots of 

text, then 

reduce it. 

adding 

more 

element 

will be 

good. 

 

Mediu

m 

View is 

Fine 
View is Great 

View is 

Fine 

View is 

Great 

View is 

fine 

 

For white box testing, we checked the same input for all testing tools. In Table 4.2, the first column 

represents all 13-input metrics. Five inputs have been put to the test with selected existing tools 

such as Espresso, Robolectric, Robotium, and Uiautomator. 

Table 4.2: Inputs of White Box Testing 

Metrics A B C D E 

Plocs 1899 67267 20159 20159 3575 

Mod. Plocs 58 7121 5021 5021 -1 

Tlocs 471 1265 1746 1746 0 

Mod. Tlocs 6 77 100 100 -1 

Classes 1 11 11 11 -1 

Added Classes 0 5 0 0 -1 

Deleted Classes 0 0 0 0 -1 

Mod. Classes 1 4 3 3 -1 

Methods 17 62 98 98 -1 

Added Methods 0 27 1 1 -1 

Deleted Methods 0 0 0 0 -1 

Mod. Methods 3 2 12 12 -1 

Classes with Mod. Methods 1 2 2 2 -1 

 

In Table 4.3 and 4.4, for every input with each selected tool, there are different outputs of eight 

different metrics, which are predicted by the XGBRegressor model. 
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Table 4.3: Tool Specified Outputs of White Box Testing 

 Espresso Robolectric 

A 

  

TLR 0.25 MTRL 0.01 

MRTL 0.11 TMR 0.19 

MCR 1 MMR 0.17 

RFCR 1 FCR 1 
  

TLR 0.25 MTRL 0.01 

MRTL 0.11 TMR 0.19 

MCR 1 MMR 0.17 

RFCR 1 FCR 1 

B 

  

TLR 0.25 MTRL 0.01 

MRTL 0.11 TMR 0.19 

MCR 1 MMR 0.17 

RFCR 1 FCR 1 

  

TLR 0.25 MTRL 0.01 

MRTL 0.11 TMR 0.19 

MCR 1 MMR 0.17 

RFCR 1 FCR 1 

C 

  

TLR 0.25 MTRL 0.01 

MRTL 0.11 TMR 0.19 

MCR 1 MMR 0.17 

RFCR 1 FCR 1 

  

TLR 0.25 MTRL 0.01 

MRTL 0.11 TMR 0.19 

MCR 1 MMR 0.17 

RFCR 1 FCR 1 

D 

  

TLR 0.25 MTRL 0.01 

MRTL 0.11 TMR 0.19 

MCR 1 MMR 0.17 

RFCR 1 FCR 1 

  

TLR 0.25 MTRL 0.01 

MRTL 0.11 TMR 0.19 

MCR 1 MMR 0.17 

RFCR 1 FCR 1 

E 

  

TLR 0.25 MTRL 0.01 

MRTL 0.11 TMR 0.19 

MCR 1 MMR 0.17 

RFCR 1 FCR 1 

  

TLR 0.25 MTRL 0.01 

MRTL 0.11 TMR 0.19 

MCR 1 MMR 0.17 

RFCR 1 FCR 1 

 

Table 4.4: Tool Specified Outputs of White Box Testing 

 Robotium Uiautomator 

A 

TLR 0.25 MTRL 0.01 

MRTL 0.11 TMR 0.19 

MCR 1 MMR 0.17 

RFCR 1 FCR 1 
 

TLR 0.25 MTRL 0.01 

MRTL 0.11 TMR 0.19 

MCR 1 MMR 0.17 

RFCR 1 FCR 1 
 

B 

TLR 0.25 MTRL 0.01 

MRTL 0.11 TMR 0.19 

MCR 1 MMR 0.17 

RFCR 1 FCR 1 
 

TLR 0.25 MTRL 0.01 

MRTL 0.11 TMR 0.19 

MCR 1 MMR 0.17 

RFCR 1 FCR 1 
 

C 

TLR 0.25 MTRL 0.01 

MRTL 0.11 TMR 0.19 

MCR 1 MMR 0.17 

RFCR 1 FCR 1 
 

TLR 0.25 MTRL 0.01 

MRTL 0.11 TMR 0.19 

MCR 1 MMR 0.17 

RFCR 1 FCR 1 
 

D 

TLR 0.25 MTRL 0.01 

MRTL 0.11 TMR 0.19 

MCR 1 MMR 0.17 

RFCR 1 FCR 1 
 

TLR 0.25 MTRL 0.01 

MRTL 0.11 TMR 0.19 

MCR 1 MMR 0.17 

RFCR 1 FCR 1 
 

E 

TLR 0.25 MTRL 0.01 

MRTL 0.11 TMR 0.19 

MCR 1 MMR 0.17 

RFCR 1 FCR 1 
 

TLR 0.25 MTRL 0.01 

MRTL 0.11 TMR 0.19 

MCR 1 MMR 0.17 

RFCR 1 FCR 1 
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4.3 Discussion 

This work is based on black box and white box testing using deep learning method. The work has 

come to a solution of testing the UI screenshots of apps density using black box testing. The 

accuracy of the models for black box testing is far better than expected but it can be more developed 

by training the models again. The white box testing model can eliminate the need for other testing 

tool as it can predict the values of the existing tool within the DeepTestDroid platform. 

 

 

4.4 Summary 

Black box and white box tests were done on the prototype. Chapter 3 describes the performance of 

the MobileNetV3Large and XGBRegressor models, which were chosen for black box testing. In 

Table 4.1, every wireframe screenshot is input. The same input photographs were tested against 

Signup/Login, E-commerce/Shop, Map/Camera, social media/Gallery, and Other, which the user 

will choose. Each input image's output is shown in the second to last column. Our model determines 

the class in the second column: very low, low, medium, high, or very high. Then manually created 

choices for signup or login, e-commerce or shop, map or camera, social media or gallery, and other 

categories are shown from the third column to the last for each input image. All testing tools 

checked the same input for white box testing. The first column of Table 4.2 lists all 13 input metrics. 

Five inputs were tested with Espresso, Robolectric, Robotium, and Uiautomator. The 

XGBRegressor model predicts eight metrics for each input with each tool in Table 4.3. Deep 

learning is used for black box and white box testing in this work. The work uses black box testing 

to test app density UI screenshots. The black box testing models' accuracy is better than expected, 

but training them again can improve it. The white box testing model is capable of predicting the 

values of existing testing tools on DeepTestDroid, eliminating the need for extra tools. 
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 Chapter 5 
 

    Conclusion 
5.1 Overall Contributions 

Black box testing is a strong testing method since it tests a system from beginning to end. A tester 

can replicate user action and check to see if the system fulfills its promises, just as end users don't 

care how a system is written or designed and expect to get a suitable response to their requests. A 

black box test assesses every relevant subsystem along the route, including the UI/UX, database, 

dependencies, and integrated systems, as well as the web server or application server. Deep 

learning-based app testing solutions can help development teams perform both black-box and 

white-box testing with more efficiency during the design and analysis phases. 

 

This study is based on deep learning to develop a deep learning-based system to forecast exam 

results. This paper uses an innovative technique by combining deep insight and black-box testing. 

Six black boxes and test data must be produced for a deep learning algorithm. The goal is to use 

the deep learning algorithm to make the most accurate forecast possible, ensuring the dependability, 

performance, and longevity of Android applications. Based on the quantity of components in the 

UI layout, five categories must be created for automated UI testing. These categories must be used 

to order the data. The sorted data can be used to train a model. Finally, a framework for UI testing 

of Android applications will be created, classifying the layouts into the appropriate groups. such as 

EfficientNetB3, ResNet50, and MobileNetV3, are used so the model continuously improves. This 

project's model will generate the values of existing testing tools for white box testing, thereby 

reducing the need for multiple testing tools. In order to determine the most effective model, the 

XGBRegressor, LinearRegression, ElasticNet, RandomForestRegressor, and 

DecisionTreeRegressor models have been evaluated. 

 

This study provides quite an acceptable accuracy rate for black-box testing UI by training the 

models accordingly. Testing manually is time-consuming, so with the deep learning method, it 

decreases a lot of hassle. Therefore, this study will benefit the developers who work on testing the 

apps with UI screenshots as well as reduce the need for using other testing tools to perform white 

box testing. 

 

 

5.2 Limitations and Future Works 

The limited dataset is one of the study's primary limitations. We experimented with multiple deep 

learning models. Some of the variations of themselves Some of them are completely different from 

each other. Here, every single model ran with the same configuration, classes, and data. From the 

top table, or diagram, we can see multiple things. Our highest test loss was in ResNet50. And the 

lowest was MobileNetV3Large. Our lowest test accuracy was RestNet50. And the highest test 

accuracy was MobileNetV3Large. For our dataset, ResNet50 was the worst model. But our best 

model was MobileNetV3Large. even though they are all pre-train models on the ImageNet 

dataset. But they still produce variations of data because of their architecture. 

 

We have approximately 60,600 datasets, but for our model we have used 10,000, which were 

categorized by the layouts of the apps and divided into 4 categories of layout density and labeled 

as density 1 to 4. We sorted these datasets according to our categorized UI screenshots of the apps. 

This data sorting technique is called the crowdsourcing technique. The quality of the images is 

another drawback of our research. Since the photographs are pulled from many web sources, their 

quality is considered when choosing them. Another limitation of our study is the quality of the 

images. The majority of the photos were taken in close proximity and with lots of light. Users who 

provide images that were taken in low light or at a great distance might not provide an accurate 
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prediction. In that instance, the user's capacity to capture an accurate image of the skin will be 

crucial to testing. 

 

Finally, as part of the future work for this experiment, we want to add more data to the dataset and 

categorize more photographs from Android applications. With photographs taken from various 

perspectives and lighting conditions, we hope to produce a dataset that is more adaptable. 

Furthermore, training models often take a lot of time. As more photographs are added to the 

collection, the processing time will increase noticeably. In this case, model training can be 

accelerated by using distributed file systems. We intend to integrate white-box testing using deep 

learning in the future because the development is currently on hold owing to a lack of datasets and 

available time. More architectures, including InceptionResNetV2 and InceptionV3, will be 

included in the future to confirm and contrast our current findings and offer a better solution. 
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Appendix A 

 

Mapping of Course and Program Outcomes
 
 

CSE400-A 

Program Outcomes: 

PO1 (Engineering Knowledge): To ensure the accuracy of the testing for black box and white box 

using deep learning. 

 

PO4 (Investigation): Appium is an open-source tool for automating native, mobile web, and 

hybrid applications on iOS mobile, Android mobile, and Windows desktop platforms.  

 

CO Details Knowledge Profile (K) Engineering problem (EP) 

CO1 To ensure the 

accuracy 

  of the testing for 

black box and white 

box using deep 

learning. 

 

(i) Background [K1, 

K2, K3] 

K1:  To ensure accuracy. 

  of the testing for black 

box and white box 

using deep learning. 

 

K2:  Appium is an open-

source tool for 

automating native, mobile 

web, and hybrid 

applications on iOS 

mobile, Android mobile, 

and Windows desktop 

platforms.  

 

K3:  Automated android 

application testing using 

deep learning. 

 

 

i) Background 

[EP1] 

 

K3: Appium is an 

open-source tool 

for automating 

native, mobile web, 

and hybrid 

applications on iOS 

mobile, Android 

mobile, and 

Windows desktop 

platforms.  

 

K4: Testing 

architecture 

followed by 

Appium – Junit and 

JaCoCo. 

K5: Test cases 

design and 

automation.  

K8:  Literature 

Paper review on 

black box and 

white box testing 

using deep 

learning.  
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ii) Research 

questions/problem 

statements [EP6] 

Test case 

generation-  

·         Approach 

·         Address 

·          

  

 

CO2 Lorem Ipsum is 

simply dummy text 

of the printing and 

typesetting 

industry.  

(i)  Related works 

[K8] 

● Literature paper 

review on current 

automated testing 

models for black 

box and white 

box 

●  Paper review 

on deep 

learning 

methods to 

automate the 

generation of 

test cases. 

●  Literature 

review in the 

i) Related works [EP1] 

K5: Flowchart Design.  

K6: Automation using deep 

learning. 

 

ii) Objectives [EP2, EP6, 

EP7] 

  

EP2: 

Implementing a deep learning 

model to prioritize test inputs 

according to the importance of 

the user’s perspective. 

EP6: 

Test case generation-  

·         Approach 

·         Address 

·         Effectiveness  

EP7: 

·         Application 

·         Android drive 

·         Test data 

·         Trained data 

·         Deep learning 

·         Test label data 
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platform for 

automated 

android 

application 

testing using 

deep learning. 

 

·         Expected result 

·         Appium 

·         Test result 

iii) Planned Methodology 

[EP2, EP6] 

EP2: 

Implementing a deep learning 

model to prioritize test inputs 

according to the importance of 

the user’s perspective. 

EP6: 

Test case generation-  

·         Approach 

·         Address 

·         Effectiveness  
 

                 

 

CSE400-B 

Program Outcomes: 

PO2 (Problem Analysis): Analyze various aspects of the objectives for designing a 

solution for the capstone project. 
 

PO3 (Design/Development of Solutions): Design and develop solutions for the capstone 

project that meet public health and safety, cultural, societal, and environmental 

considerations. 
 

PO5 (Modern Tool Usage): Identify and apply modern engineering and IT tools for the 

design and development of the capstone project.  
 

PO6 (The Engineer and Society): Assess and address societal, health, safety, legal, and 

cultural aspects related to the implementation of the capstone project considering the 

relevant professional and engineering practices and solutions. 
 

 

 



 
 

49 
 

CO Details Knowledge Profile (K) Engineering Problem 

(EP) 

CO3 Analyze various 

aspects of the 

objectives for 

designing a solution 

for the capstone 

project.  

(i) Problem Analysis [K1, 

K2, K3, K4]  

K1: To ensure the testing is 

accurate. 

K2: python, vscode, 

tensorflow, kaggle for 

training the model. 

K3: Mobile Application 

and software scheduling. 

K4: Testing architecture 

followed by consensus 

mechanism like image 

dataset of mobile 

applications UI. 

 

(i) Problem Analysis 

[EP1, EP2, EP3, EP6, 

EP7]  

EP1: 

K5: Model training, 

image datasets, GUI 

testing process. 

K6: Testing through 

code and deep learning 

method. 

EP2:  

The Black Box and 

White Box techniques 

are broad ones that are 

not only for AI. In 

addition to their many 

other applications, they 

are used to create AI 

models in addition to 

developing and testing 

traditional software. 

 

CO4 Lorem Ipsum is 

simply dummy text 

of the printing and 

typesetting industry.  

(i) Design and 

Implementation [K5]  

We designed a UI for 

sorting the datasets easily. 

(i)Design and 

Implementation [EP1, 

EP2, EP4, EP5, EP6, 

EP7]  
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 Implementing a deep 

learning model to 

prioritize test inputs 

according to the 

importance of the 

user’s perspective. 

EP6: 

Test case generation-  

·         Approach 

·         Address 

·         Effectiveness  

CO5 Lorem Ipsum is 

simply dummy text 

of the printing and 

typesetting industry. 

It has survived not 

only five centuries, 

but also the leap 

into electronic 

typesetting, 

remaining 

essentially 

unchanged.  

(i) Materials and Devices 

[K6] 

K6: Engineering Practice 

(technology): TensorFlow, VS 

code, Python, and Rico, the 

mobile app datasets for building 

data-driven design applications. 

 

(i) Materials and 

Devices [EP1, EP2, EP4, 

EP5]  

TensorFlow is an 

open-source 

framework 

developed by 

Google for deep 

learning 

applications, while 

Python is used for 

developing websites, 

software, task 

automation, data 

analysis, and data 

visualization. 

Kaggle is an online 

community of data 

scientists and 

machine learning. 

 

CO6 Assess and address 

societal, health, 

(i) Social and 

Environmental Impact 

(i) Social and 

Environmental 
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safety, legal, and 

cultural aspects 

related to the 

implementation of 

the capstone project 

considering the 

relevant 

professional and 

engineering 

practices and 

solutions. specimen 

book.  

of Engineering [K7] 

K7: Comprehension of 

engineering in society: This 

will replace manual testing 

with AI-powered automation, 

making GUI testing simpler. 

Impact of 

Engineering [EP2, 

EP5, EP6] 

Visual GUI testing 

(VGT) is more flexible 

and resilient to GUI 

modifications than earlier 

high-level (GUI) test 

automation techniques. 

VGT is useful, adaptable, 

and cost-effective, with 

58 distinct CPLs and 26 

categories. 

 

CSE400-C 

Program Outcomes: 

PO7 (Environment and Sustainability): Analyze various aspects of the objectives for 

designing a solution for the capstone project. 

 

PO8 (Ethics): Design and develop solutions for the capstone project that meet public 

health and safety, cultural, societal, and environmental considerations. 
 

PO9 (Individual Work and Teamwork): Assess and address societal, health, safety, 

legal, and cultural aspects related to the implementation of the capstone project considering 

the relevant professional and engineering practices and solutions. 

 

P10 (Communication): The main approach for this project would be an online gathering 

via Google Meet. There was no communication breakdown because every project 

participant was close to one another.  

 

P11 (Project Management and Finance): We were always working on this project under 

the direction of our supervisor. We have continued to use the Work Breakdown Structure 

for project management. Each task had a time limit, and we completed them all by that 
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time. This is how we were able to complete our assignment on schedule. The project had 

no significant costs. The project's participants self-funded any costs that were necessary. 

 

P12 (Life-Long Learning): We have put the ideas we acquired in our prior classes into 

practice in this project. We picked up a few more ideas while working on the project. Along 

with these, we also learned some fundamental skills like problem-solving, critical thinking, 

and communication that will be useful in the future. 

 

CO Details Knowledge Profile (K) 
Engineering Problem 

(EP) 

CO7 Identify and apply 

modern engineering 

and IT tools for the 

design and 

development of the 

capstone project. 

(i) Societal and 

environmental contexts 

[K7] 

K7: Comprehension of 

engineering in society: 

This will replace manual 

testing with AI-powered 

automation, making GUI 

testing simpler. 

(i) Societal and 

environmental contexts 

[EP2, EP5, EP6] 

EP2: Range of 

conflicting 

requirements: Social 

and Environmental 

Impact of Engineering 

[EP2, EP5, EP6]  

Visual GUI testing (VGT) 

is more flexible and 

resilient to GUI 

modifications than earlier 

high-level (GUI) test 

automation techniques. 

VGT is useful, adaptable, 

and cost-effective, with 

58 distinct CPLs and 26 

categories. 
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CO8 Assess and address 

societal, health, safety, 

legal, and cultural 

aspects related to the 

implementation of the 

capstone project 

considering the 

relevant professional 

and engineering 

practices and 

solutions. 

(i) Ethical principle and 

practices [K7] 

K7: Comprehension of 

engineering in society:  

We designed a UI for 

sorting the datasets easily. 

ring in society:  

Materials and Devices 

[EP1, EP2, EP4, EP5]  

TensorFlow is an open-

source framework 

developed by Google for 

deep learning 

applications, while 

Python is used for 

developing websites, 

software, task 

automation, data analysis, 

and data visualization. 

Kaggle is an online 

community of data 

scientists and machine 

learning engineers, 

 

C09 Identify and apply 

modern engineering 

and IT tools for the 

design and 

development of the 

capstone project. 

Materials and Devices 

[K6] 

TensorFlow, VS code, 

Python, and Rico, the 

mobile app datasets for 

building data-driven 

design applications. 

 

 

CO10 We have an effective 

report on the capstone 

project. In the design 
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and implementation 

section of the report, 

we went into great 

detail on the specific 

design and 

implementation 

aspects of our project. 

CO11 Given the size of the 

project, it took a long 

time to complete. Our 

project work had been 

scheduled. The ability 

to keep on schedule 

and submit the project 

on time was one of the 

most crucial aspects of 

the project, which we 

successfully 

accomplished thanks 

to our strong 

teamwork. 

  

CO12 We had to acquire new 

concepts and apply 

them in order to 

employ the concepts 

we used in this 

experiment. For this 

project, we were able 
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to combine the 

exploration of fresh 

ideas with more 

established ones. Users 

will be able to identify 

the inflammatory skin 

diseases with the aid 

of this practical 

knowledge application 

in the finished 

software program. 



 
 

 


