

DeepTestDroid: A Platform for Automated

Application Testing Using Deep Learning

Nazia Tabassum Natasha

ID: 2019-1-60-202

Imran Fakir

ID: 2019-1-60-203

Md. Huzaifa

ID: 2019-1-60-079

Fabiha Bushra Fabin

ID: 2019-1-60-139

Sabiha Afsana Falguni

ID: 2019-1-60-261

A Capstone project report submitted in partial fulfillment of the requirements for the

degree of Bachelor of Science in Computer Science and Engineering

Department of Computer Science and Engineering East West University

Dhaka-1212, Bangladesh

 9th August 2023

ii

Declaration

We, Nazia Tabassum Natasha, Imran Fakir, Md. Huzaifa, Fabiha Bushra Fabin and Sabiha

Afsana Falguni hereby, declare that the work presented in this capstone project report is the

outcome of the investigation performed by us under the supervision of Dr. Mohammad Rifat

Ahmmad Rashid, Designation, Department of Computer Science and engineering, East West

University. We also declare that no part of this project has been or is being submitted elsewhere

for the award of any degree or diploma, except for publication.

Countersigned

.

Dr. Mohammad Rifat Ahmmad Rashid
Supervisor

Signature

.

Nazia Tabassum Natasha
2019-1-60-202

.

Fabiha Bushra Fabin
2019-1-60-139

.

Md. Huzaifa
2019-1-60-079

.

Imran Fakir
2019-1-60-203

.

Sabiha Afsana Falguni
2019-1-60-261

iii

Letter of Acceptance

The capstone project report entitled "DeepTestDroid: A Platform for Automated

Application Testing Using Deep Learning" is submitted by Nazia Tabassum Natasha,

Imran Fakir, Md. Huzaifa, Fabiha Bushra Fabin and Sabiha Afsana Falguni to the

Department of Computer Science and Engineering, East West University, Dhaka,

Bangladesh is accepted for the partial fulfillment of the requirement for the degree of

Bachelor of Science in Computer Science and Engineering on (9/8/2023).

Board of Examiners

1.

Assistant Professor

Department of Computer Science and Engineering

East West University

2.

Chairperson and Associate Professor

Department of Computer Science and Engineering

East West University

Supervisor Name (Dr. Mohammad Rifat Ahmmad Rashid)

Chairperson Name (Dr. Maheen Islam)

iv

Abstract

Black box and white box testing are used to measure an application. Testing can be complex and

costly. Various testing techniques can measure multiple parts of an application. This work

addresses the discussion of black box and white box testing types, utilization of testing and training

data, data set categorization, implementation of deep learning for automated testing, construction

of testing approaches, investigation into fundamental techniques and input information, processing

of detailed test approach information, proposal for assessing automated testing effectiveness,

utilization of quality attributes, metrics, datasets, and procedures for assessment, and employment

of evaluation metrics to measure the deep learning approach performance. DeepTestDroid

performs UI performance testing, which is black box testing. It can predict the density of an

application's page from its wireframe picture. Higher density means a longer load time. UI

performance testing can only be performed with human interaction. However, DeepTestDroid

makes it automatic. To detect density, DeepTestDroid uses MobilenetV3Large.

MobileNetV3Large was selected after an experimental analysis alongside other image processing

models and almost 75% of test accuracy was achieved by MobileNetV3Large model, through this

work. To reduce the usage of different tools for white box testing, XGBRegressor,

RandomForestRegressor, and DecisionTreeRegressor models were trained and tested to generate

the values of the application’s UI that the existing testing tool would predict and XGBRegressor

was able to give the R2 (R-squared) score of 0.96. This project can reduce the cost, time, and step

of UI performance testing as well as the white box testing. It will also make it easier to complete

the testing phase of SDLC. This work introduces significant utilities that were not previously

offered by existing literature.

v

Acknowledgments

 Acknowledgments

As it is true for everyone, we have also arrived at this point of achieving a goal in our life through

various interactions with and help from other people. However, written words are often elusive and

harbor diverse interpretations even in one’s mother language. Therefore, We would not like to

make efforts to find best words to express my thankfulness other than simply listing those people

who have contributed to this thesis itself in an essential way. This work was carried out in the

Department of Computer Science and Engineering at East West University, Bangladesh.

First of all, we would like to express my deepest gratitude to the almighty for His blessings on us.

Next, our special thanks go to our supervisor, “Dr. Mohammad Rifat Ahmmad Rashid”, who gave

us this opportunity, initiated us into the field of “DeepTestDroid: A Platform for Automated

Application Testing Using Deep Learning”, and without whom this work would not have been

possible. His encouragement, visionaries and thoughtful comments and suggestions, unforgettable

support at every stage of our B.Sc. study was simply appreciating and essential. His ability to

muddle us enough to finally answer our own question correctly is something valuable what We

have learned, and We would try to emulate, if ever we get the opportunity.

We would like to thank our group members for their excellent collaboration during performance

evaluation studies; overall support; and their helpful suggestions in solving tricky technical

problems. Last but not least, we would like to thank our parents for their unending support,

encouragement, and prayers.

There are numerous other people too who have shown me their constant support and friendship in

various ways, directly or indirectly related to our academic life. We will remember them in my/our

heart and hope to find a more appropriate place to acknowledge them in the future.

Nazia Tabassum Natasha

August 2023

Imran Fakir

August 2023

Md. Huzaifa

August 2023

 Fabiha Bushra Fabin

August 2023

Sabiha Afsana Falguni

August 2023

vi

Table of Contents

Declaration ... ii

Letter of Acceptance ... iii

Abstract ... iv

Acknowledgements .. v

Table of Contents ... vi

List of Figs ... viii

List of Tables... ix

List of Algorithms .. x

List of Acronyms .. xi

Chapter 1 Introduction

1.1 Background .. 01

1.2 Problem Statement and Analysis .. 01

1.3 Project Objective .. 02

1.4 Project Contributions .. 03

1.5 Project Outlines .. 04

Chapter 2 Related Works

2.1 Survey of the State-of-the-art ... 05

2.2 Summary .. 08

Chapter 3 Materials and Method

3.1 Materials ... 13

3.1.1 Dataset Collection ... 13

3.1.2 Dataset Exploration ... 13

3.1.3 Dataset Sampling ... 14

3.1.4 Dataset Processing ... 16

3.1.5 Research Environment and Devices .. 19

3.2 Method ... 19

3.2.1 Proposed Model ... 20

3.2.2 Experiment Setup .. 26

3.2.3 Algorithm/Model Formulation ... 27

vii

3.2.4 Obtained Results of Models .. 29

3.2.5 Analysis of Models ... 30

3.2.6 Performance Analysis of Models .. 32

3.2.7 Design/Framework .. 34

3.3 Summary .. 35

Chapter 4 Results and Discussion

4.1 Project Prototype .. 36

4.2 Obtained Results .. 37

4.3 Discussion .. 41

4.4 Summary .. 41

Chapter 5 Conclusion

5.1 Overall Contributions ... 42

5.2 Limitations and Future Works .. 42

Bibliography .. 44

Appendix A Mapping of Course and Program Outcomes ... 46

viii

List of Figs

1.1 Comparison Between Black Box and White Box Testing in Various Paper 03

1.2 Flowchart of this Book .. 04

3.1 Screenshot of RICO Dataset .. 14

3.2 Data Sample for Black Box Testing .. 15

3.3 Dataset Preprocess of Black Box Testing ... 16

3.4 Before and After of the Dataset Alteration .. 18

3.5 Dataset Preprocess of White Box Testing ... 19

3.6 Tools for Data Sorting ... 19

3.7 MobileNet Architecture ... 20

3.8 ResNet Architecture .. 21

3.9 EfficientNet Architecture .. 22

3.10 XGBoost Architecture ... 23

3.11 LinearRegression Architecture .. 23

3.12 ElasticNet Architecture ... 24

3.13 RandomForestRegressor Architecture... 25

3.14 DecisionTreeRegressor Architecture... 25

3.15 Model Configuration of Black Box Testing .. 27

3.16 Model Creation Flowchart for Black Box Testing .. 28

3.17 Model Creation Flowchart for White Box Testing .. 29

3.18 MobileNetV3Large Results ... 30

3.19 MobileNetV3Small Results ... 31

3.20 EfficientNetB0 Results .. 31

3.21 EfficientNetB1 Results .. 31

3.22 EfficientNetV2B0 Results ... 32

3.23 ResNET50 Results .. 32

3.24 Result Comparison of Black Box Testing ... 33

3.25 Result Comparison of White Box Testing... 33

3.26 Workflow of the Black Box Testing .. 34

3.27 Workflow of the White Box Testing ... 34

4.1 Frontend of the Black Box Testing ... 36

4.2 Frontend of the White Box Testing ... 37

ix

List of Tables

2.1 Summary of the Related Works ... 08

3.1 List of Classes .. 14

3.2 Dataset Sample for White Box Testing .. 15

3.3 Density Class Example ... 17

3.4 Configuration of Black Box Testing .. 26

3.5 Results of the Models of Black Box Testing .. 29

3.6 Results of the Models of White Box Testing ... 30

4.1 Results of Black Box Testing ... 37

4.2 Inputs of White Box Testing ... 36

4.3 Tool Specified Outputs of White Box Testing ... 40

4.4 Tool Specified Outputs of White Box Testing ... 40

x

List of Algorithms

1. MobileNetV3Large

2. MobileNetV3Small

3. EfficientnetB0

4. EfficientnetB1

5. EfficientnetV2B0

6. ResNET50

7. XGBRegressor

8. LinearRegression

9. ElasticNet

10. RandomForestRegressor

11. DecisionTreeRegressor

xi

List of Acronyms

SDLC Software Development Life Cycle

UX User Experience

GUI Graphical User Interface

RL Reinforcement Learning

ML Machine Learning

AI Artificial Intelligence

R&D Research and Development

TEMA Testing and Monitoring for Android

BDD Behavior-Driven Development

ARES Automated Reinforcement learning-based Exploration of Android System

FATE Fast Android Testing Execution

AUT Application Under Test

PLOCs Potential Lines of Codes

Mod. PLOCs Modified Potential Line of Codes

TLOCs Test Lines of Codes

Mod. TLOCs Modified Test Lines of Codes

TLR Test LOC’s Ratio

MTRL Modified Test LOCs Ratio

MRTL Modified Relative Test LOCs

TMR Total Method Ratio

MMR Modified Method Ratio

MCR Modern Code Review

RFCR Reached Full Code Coverage Requirement

FCR Flow Coverage Requirement

1

Chapter 1

Introduction

1.1 Background

Black box testing is a powerful testing technique because it exercises a system end-to-end. Just like

end-users don’t care how a system is coded or architected, and expect to receive an appropriate

response to their requests, a tester can simulate user activity and see if the system delivers on its

promises. Along the way, a black box test evaluates all relevant subsystems, including UI/UX, web

server or application server, database, dependencies, and integrated systems.

By leveraging deep learning, app testing tools can provide more efficiency for development teams

in the creation and analysis phases of testing through both black-box and white-box testing [1].

Black box testing involves testing a system without knowing its internal workings. A tester provides

input and observes the system-generated output under the test. This makes it possible to identify

how the system responds to expected and unexpected user actions, its response time, usability

issues, and reliability issues. White box testing is a technique that uses a program’s internal or

source code to design different test cases to check the program’s quality; this technique, the internal

structure, and the implementation of how an application works are known to the tester. Due to the

rapid release cycle and limited human resources, creating test cases promptly and manually is

challenging. As a result, numerous automated test input generators have been designed. Tools and

software already enable us to automatically test apps, including Monkey, Dyno Droid, Espresso,

etc. The success of an automated test relies on picking the appropriate interaction for a given UI,

allowing access to new relevant UI states. However, it can be challenging for a machine to interpret

the GUI and select the appropriate button to click or scroll. Because of this, most automated test

generators use different types of GUI elements and instead use a random selection or brute force

to choose which one to test. Human testers are better at this than automated test input generators

because they can quickly determine which parts of the GUI need to be tested.

1.2 Problem Statement and Analysis

Android application’s UI testing is a type of “black box” testing that focuses on ensuring the user

interface of an application is functioning correctly. The purpose of UI testing is to ensure that the

application's user interface is intuitive, easy to use, and that load performance is good and

consistent with the design specifications. For “white box” testing, there are many tools that can

predict some parameters’ values of an application’s UI. But there is no platform which automates

and incorporates different tools while using deep learning methods for predicting those values. To

perform UI testing, the following issues arise which makes the testing difficult to perform to ensure

the quality of the interface of an Android application. In some cases, UI testing tools and models

may not be able to adapt to changes in the graphical user interface of an application, leading to

false positives or false negatives, which means a layout can be categorized as medium density but

in the updated version of the app, it can be categorized as very-high density. As applications evolve

and change over time, automated UI tests may need to be updated and maintained to ensure they

are still relevant and accurate. Manual UI testing requires test data to be maintained and updated

regularly, which can be time consuming (especially when testing large and complex applications)

and error-prone.

UI testing tools may have limitations in their ability to interact with certain parts of an application

or handle certain types of user inputs, which can impact the accuracy and completeness of the

testing. For example, a UI testing tool may not be able to interact with elements that are

2

dynamically generated or hidden, such as pop-ups or overlays that appear only under certain

conditions. Test data that are manually classified for the model will have a big impact on the

prediction of the model, as it might affect the prediction of the model if the classified data are not

sorted carefully.

Here are our few research questions:

● Which type of black box and white box testing is addressed in our paper?

o What type of data will we use for testing and training the model?

o How will we categorize the data set?

o How will we automate the testing using a deep learning approach?

● How are the testing approaches built?

o How will we investigate the fundamental techniques leveraged as well as the amount

of input information that is required to perform testing?

o How will we process detailed information on the design and implementation of test

approaches?

● How can we measure the effectiveness of our proposed automated testing approach?

o Which quality attributes, metrics, datasets, and procedures for the m literature can be

used for measuring the effectiveness of our approach?

o Which evaluation metrics can be used to measure the performance of the deep

learning approach?

In order to automate UI testing, first we have to create five categories according to the number of

components present in the UI layout. Then according to these categories, data needs to be sorted.

With the sorted data a model needs to be trained. Finally, a platform will be created to perform UI

testing for android applications which will determine which class the app’s layouts belong to. Then

a model will be created which will determine the values for white box testing to automate and

eliminate the need of other existing testing tools.

1.3 Project Objectives

To build a system that predicts test outcomes using deep learning. This paper integrates black-and-

white-box testing with deep understanding, a novel approach. The goal is to automate black-box

and white-box tests and generate test data for a deep learning algorithm. The objective is to achieve

the most accurate prediction using the deep learning algorithm, ensuring Android applications'

durability, vulnerability, and performance. Automated UI testing requires the creation of five

categories based on the number of components in the UI layout. The data needs to be sorted

according to these categories. Using the sorted data, a model can be trained. Finally, a platform will

be developed for UI testing of Android applications, classifying the layouts into their respective

categories.

Fig 1.1 shows the comparison graph between black box and white box testing in various papers,

52 papers worked on black box testing versus 14 papers worked on white box testing. No single

paper incorporated black box and white box testing in their model.

3

Fig 1.1: Comparison Between Black Box and White Box Testing in Various Papers

1.4 Project Contributions

Testing an Android application's user interface (UI) is a sort of "black box" testing that focuses on

making sure the user interface is operating properly. The goal of UI testing is to confirm that the

user interface of the program is clear and simple to use, and that load performance is satisfactory

and consistent with the design standards. The following challenges make it challenging to conduct

UI testing to guarantee the quality of an Android application's user interface. When UI testing

methods and models are unable to adapt to changes in an application's graphical user interface,

false positives or false negatives might result, classifying a layout as medium density yet in the

updated version. Even the first initiative for white box testing has been taken.

The contributions of this paper are:

1. We must first build five categories based on the number of components in the UI layout in

order to automate UI testing. The data must then be sorted in accordance with these

categories.

2. It is necessary to train a model using the sorted data. Last but not least, a platform will be

developed to do UI testing for Android applications, identifying the class to which the app's

layouts belong. Transfer learning, such as EfficientNetB3, ResNet50, and MobileNetV3,

are used so the model continuously improves.

3. For white box testing, the model created for this project will generate the values of the

existing testing tools which will reduce the need for using different testing tools.

XGBRegressor, LinearRegression, ElasticNet, RandomForestRegressor,

DecisionTreeRegressor models have been tested in order to determine the best working

model.

4

1.5 Project Outlines

The remainder of the essay is structured as follows. Section 2 covers the literature reviews, Section

3 describes the suggested model and its components for testing the UI of the apps, Section 4 shows

the results and discussion, and Section 5 concludes the study. Fig 1.2 shows the sequence of this

book.

Fig 1.2: Flowchart of this Book

5

Chapter 2

Related Works

2.1 Survey of the State-of-the-art

Deep Xplore, introduced in a research publication, revolutionizes the systematic testing of real-

world deep learning systems [2]. This system efficiently discovers improper corner case behavior

in state-of-the-art deep learning models with thousands of neurons trained on popular datasets.

Deep Xplore generates the wrong test inputs in one second on a laptop. Unlike differential testing

approaches, deep Xplore detects errors even when profound neural network outputs are consistent.

Most deep neural networks are designed and trained independently, making it unlikely that all of

them will commit the same error in practice.

One research study outlines constructing and testing a mobile app-based artificial intelligence

prototype that mimics user activities [3]. Deep learning predicts screen taps and actions.

Convolutional neural networks encode visuals and screen elements, while long-short-term memory

remembers to touch positions on successive screens. Deconvolutional neural networks indicate tap

location and linear neural networks' action type. The research shows how deep learning can

automate mobile app testing through model construction and training. More tests are planned to

improve outcomes. They want to experiment with longer training times, larger datasets, and

transfer learning to retrain network components before training others. Another option is to share

learning with a more prominent public dataset before fine-tuning their own. After improving the

findings, link the network's output to testing software and test its multi-screen navigation. The final

goal is to train the prototype and utilize it as an automatic input generator for testing.

Another work proposes new testing methods for system faults. The proposed method uses a web

scraper, ML, and Selenium [4]. Machine learning and Selenium are used to improve web-based

error detection and discovery. The researchers plan to develop a web testing tool that delivers

accurate URL test results. They want to provide specialized testing methods for distinct web

elements and expand test cases to support diverse testing tactics.

Another study automates and scales Android app security and robustness testing. The paper

introduces an Android-specific software analysis technique that creates several fuzz test scenarios

[5]. They also offer a cloud-based test infrastructure that runs these test cases on several simulated

Android devices. This method underlines the need for smartphone-specific guided fuzzing

strategies rather than brute-force fuzzing. The white-box strategy tries to identify vulnerabilities

efficiently, decreasing the time and computational resources needed for real-world fuzz testing.

In another study, the authors propose a new Android app testing automation method [6]. Machine

learning and frequent test situations improve testing. Empirical analysis shows that their improved

testing tool outperforms conventional methods in natural settings. Activity classifications and

preset features limit the researchers' approach. They are working with the Test Project R&D team

to add activity categories and reduce the testing algorithm's reliance on hard-coded test cases.

Another research study introduces Crash Scope, an automated Android developer tool that creates

crash reports and test scripts [7]. It gives developers thorough error reports and detects a similar

number of crashes as other advanced tools. The crash report contains screenshots, steps to

reproduce the crash, stack traces of exceptions, and a script that can consistently recreate the issue.

The researchers hope to use model-based GUI testing and static analysis to streamline bug reports

and improve their systematic exploration method.

6

Humanoid is a new method for automated black-box testing of humanoid Android apps. Deep

learning generates GUI test inputs from human interactions [8]. A deep neural network model

accurately predicts application user interactions. This learned model is used to create an Android

input generator. The input generator is tested on open-source and commercial programs to verify

real-world dependability and applicability. Humanoid has limits. System broadcasts and sensor

events are ignored. It also does not predict text input. The researchers propose to enhance the

interaction model or use alternative text input generation methods to address these constraints.

In a research study, the researchers proposed automating Android app testing to find GUI problems

[9]. The researchers found existing and undetected system weaknesses, providing vital insights to

avert future failures. However, limits must be acknowledged. Defects beyond designated activity,

event, or type categories cannot be detected. Researchers propose a dualistic approach to avoid

these restrictions. First, they suggest state machines for I/O and concurrency primitive invocations.

Developers can compare application logs to this model to better spot anomalies. Second, they want

Java static analysis tools to use model-based verification. This compile-time technique can identify

pattern and state-machine violations during development, minimizing dependency on automated

testing and improving system dependability.

A grey literature review on using artificial intelligence (AI) to improve test automation is presented

in another study [10]. AI is being used to create and enhance test code, according to 136 papers

found in 1,200 sources. AI-enabled problems and solutions are categorized in the report. Code and

automated test generation are examples of common issues and solutions. The report also suggests

adding literature sources and using developer surveys and interviews to corroborate the findings

on AI in test automation. Traditional and AI-based methods can be compared to assess AI's benefits

in testing.

Software automation and machine learning (ML) frameworks were extensively explored in the

paper [11]. Testing tools were rated on test performance, accuracy, scope, time, expertise, and

manual labor. To improve software quality and ML frameworks for automation software. Future

studies will examine and organize software testing and machine learning research to help

researchers and engineers develop guidelines for using ML approaches to software testing.

This case study presents a novel automated testing framework that blends user interaction

characteristics, historical bug data, and an interest point detector and descriptor to find user

interaction concerns effectively [12]. This methodology detects user interaction problems

empirically. The researchers want to create a customized exploration environment to influence

target application event sequences during testing. Each application's scope will be expanded to

assess its usefulness and resilience further.

The researchers created a mechanism to generate tests for Android resource leak problems

automatically [13]. They propose a resource-efficient, neutral GUI event flow. Their resource leak

testing method surpasses a non-automated approach from earlier research. The study shows that

static control flow analysis can automatically develop comprehensive Android GUI tests for

repeating behaviors. Static or dynamic analysis-based test execution, monitoring, and prioritizing

methodologies need improvement.

AM-TaaS, a cloud-based automated mobile app testing system, is described in the paper. The

framework gives users on-demand testing services [14]. Results reveal that framework-designed

automated test cases tested all emulated devices. Future research will optimize and extend the cloud

infrastructure, automate more test cases based on specified criteria, build new evaluation methods

for test cases, and expand the framework to accommodate Windows Phone and iOS.

In the paper, the researchers address the performance degradation of mobile devices due to the

simultaneous use of multiple mobile applications [15]. They have developed a performance testing

7

tool (PTT) with a user-friendly interface and accurate performance testing results. The plan for

PTT includes enhancing performance indicators such as electricity and GPU.

The research paper examines model-based testing of Android user interfaces, notably the BBC

News widget case study [16]. Case study models and tools are open-source. The researchers

emphasize that although the technology (TEMA) employed still needs to provide automatic tools

for reverse engineering models, no technical limitations hinder this capacity. The device could

include a scripting language with keywords or a Robot Framework library.

The research paper presents an innovative method for automating the functional testing of mobile

software [17]. This method combines machine learning techniques with standard test scenarios for

effective and practical testing. They demonstrate that their system can perform a significant portion

of the tasks typically done by human testers, potentially reducing manual testing efforts.

This paper examines a sophisticated Android remote UI testing infrastructure. Developers and

researchers can test scripts on several Android versions to find bugs across platforms quickly [18].

The platform cannot imitate real-world use; therefore, it cannot test applications primarily relying

on speech, gesture, or movement inputs. Multitouch events and device orientation testing are

planned to improve the platform.

This paper discusses automated software interface testing, particularly behavior-driven testing, a

key component of BDD. Behavior-based testing is used for Android app user interface automation

[19]. Behavior-driven testing involves constant reworking to adapt to environmental changes;

therefore, upgrading the instrument to enable Cucumber may not be viable for existing products

with instrumented tests.

A privacy framework in the paper limits undesired permissions and prevents programs from

collecting user data [20]. The proposed technique uses data mining to identify superfluous

permissions and modify permission information for privacy and application operation. The

framework may not work for sealed, protected applications in sectors like finance, which require

additional protection. The researchers want to strengthen the framework for such applications'

security and protection procedures.

In this paper, mobile applications face fragility in GUI testing, as desktop applications are less

rigorous [21]. This research investigates the dissemination of test classes using common GUI

Automation Frameworks for Android applications, the extent of changes needed to maintain

relevance, code turnover, and the fundamental adjustments in the AUT that prompted these

modifications. The study uses 12 metrics and a classification system to analyze test class

progression and code turnover. Results show no significant adoption of GUI automation

frameworks within open-source Android projects hosted on GitHub. However, test suites require

frequent modifications, with 8% of developers’ modified lines of code involving test code and 50%

involving changes in the graphical user interface. This may hinder developers' adoption of

automated testing. Assessing maintenance requirements and categorizing factors that require

modifications can serve as a standard for software developers and provide a foundation for creating

practical recommendations and designing automated utilities to address this issue.

Finally, researchers in the paper used Deep Reinforcement Learning (RL) to automate Android app

exploration [22]. ARES and FATE, their model-based Android testing tools, highlight their

approach's efficacy. Coverage and problem discovery are better with configuration structures. The

process may degrade, and system-level events that require rooted devices cannot be performed.

Android app fault categories and iOS adaptations are planned. The papers propose novel methods

and frameworks for automating Android application development, addressing constraints, and

suggesting further study.

8

2.2 Summary

Table 2.1 summarizes all the papers that have been discussed so far. This table highlights each

work’s methodology, drawbacks and the solutions that have been addressed in our work.

Table 2.1: Summary of Related Works

Paper Title Methodology Drawbacks Solution

DeepXplore:

Automated Whitebox

Testing

of Deep Learning

Systems

[2]

It effectively identifies

numerous rare edge case

issues in advanced deep

learning models

containing thousands of

neurons trained on

widely-used datasets.

Here, researchers only

performed white box

testing. They did not

test it from the

interface, which is

black box testing.

A deep learning

approach was

utilized in

black-box

testing to

determine the

density of

Android

applications' UI.

Visual GUI testing in

practice: challenges,

problems and

limitations [3]

This study identified

four high-level solutions

and metrics on cost and

return on investment,

indicating that VGT is

valuable, flexible, and

cost-effective for

industrial practitioners.

Study limitations is

VGT transitions were

performed on safety-

critical systems with

legacy code and

similar characteristics.

The UI testing

was done by the

deep learning

approach.

A Whitebox Approach

for Automated Security

Testing of Android

Applications on the

Cloud [4]

In this paper, researchers

provide an overview of a

multi-faceted project

targeted at automatically

testing the security and

robustness of Android

apps in a scalable

manner.

They did not

implement deep

learning to automate

testing. Also, they did

not perform any black

box testing for security

testing.

The

methodology

proposes black-

box testing with

the

implementation

of deep learning

for automating

Android

application

testing.

Humanoid: A Deep

Learning-based

Approach to

Automated Black-box

Android App Testing

[5]

A deep neural network

model was designed and

implemented to analyze

user interactions with an

app. An Android app

input generator was also

developed based on this

model and evaluated on

open-source and market

apps.

This paper has

limitations regarding

including system

broadcasts and sensor

events as inputs.

Furthermore, it does

not cover white box

testing or the ability to

predict text when

sending text input

actions.

In

DeepTestDroid,

black-box (UI

testing) was

performed with

a deep-learning

approach.

9

A Deep Learning Based

Approach to

Automated App

Testing [6]

Researchers designed

and implemented an

artificial intelligence

prototype that mimics

real user behavior using

deep learning and neural

networks.

The prototype was not

trained using

reinforcement learning

to identify bugs and

glitches.

Here the

automation was

done through

GUI testing of

apps

screenshots.

User interface test

automation for an

Android application [7]

This paper evaluates the

applicability of

behavior-based testing

for automated user

interface testing of an

android application,

focusing on Agile

software development

and its application in

Agile software

development.

Drawbacks in the use

of behavior driven

testing as it requires

refactoring to keep up-

to-date with changes in

the environment.

The interface

testing is done

properly by the

model trained

with deep

learning

approach.

Automating GUI

testing for Android

applications [8]

Researchers propose an

automated Android

application testing

approach for graphical

user interface bugs,

identifying existing and

new issues, and

preventing future issues.

There were some

limitations such as

some bugs did not fall

into the

activity/event/type

categories.

Here android

apps UI was

taken for testing

purpose

Automation of Android

Applications Testing

Using Machine

Learning Activities

Classification [9]

An approach for

automating Android

application testing using

machine learning and

reusing test scenarios,

outperforming standard

methods in realistic

settings, is presented.

Limited to the activity

types and the

functionalities which

have been pre-defined.

Deep learning

was taken to

perform black

box and ML

approach was

taken to

perform white

box testing.

An Approach of

Automated Testing on

Web Based Platform

Using Machine

Learning and Selenium

[10]

Their approach trained

web pages from human

perception, intelligently

performing sanity and

smoke tests on elements,

and classifying outputs

as error pages or not

intended.

Limitation testing all

web elements for a

given URL or testing

specific web elements

for specific types.

Both white box

and black box

testing was

performed.

10

AI-based Test

Automation: A Grey

Literature

Analysis [11]

This research reviews

the application of

artificial intelligence in

test automation

procedures, analyzing

over 1,200 sources and

identifies six common

tools and their AI-

enabled solutions, with

manual code

development and

automated test

generation being the

most frequently reported

problems.

They did not survey

and interviews with

developers will

confirm findings, and

comparison tests

between traditional

and AI-based methods

to evaluate AI's

advantages.

This work

provides

solutions that

are also based

on area of AI.

Evaluation of an

Automated

Testing Framework: A

Case Study [12]

They suggested

automated testing

framework using user-

interaction

characteristics, historical

bug data, and interest

points detector for defect

detection.

Researchers did not

create a personalized

exploration

environment for better

control over event-

sequences and

application scope.

Both black box

and white box

testing was

automated in

the platform.

CrashScope: A

Practical Tool for

Automated Testing of

Android Applications

[13]

CrashScope is an

automated tool for

Android developers,

generating crash reports

and test scripts,

providing detailed

information, including

screenshots,

reproduction steps,

exception stack trace,

and a reliable script.

Researchers did not

explore bug report

reduction using model-

based GUI testing and

static analysis.

GUI testing was

performed by a

model trained

by deep

learning

approach.

Automated Mobile

Testing as a

Service (AM-TaaS)

[14]

This introduces AM-

TaaS framework,

providing automated

mobile application

testing on-demand using

cloud infrastructure,

enabling 100% device

testing using the

framework's test cases.

Researchers did not

optimize cloud

infrastructure,

automate test cases,

develop new

evaluation techniques,

and develop

frameworks for

Windows Phone and

iOS platforms.

DeepTestDroid

platform can

automatically

test wireframes

including

android, iOS,

and windows

apps.

Privacy Protection

Framework for

Android [15]

This paper proposes a

privacy-preserving

secure framework to

restrict unnecessary

permissions, ensuring

proper functioning and

user data protection.

Their approach may

not work for sealed

protected

finance/payments

applications due to

additional security,

preventing installation.

This platform

tests the app's

screenshots to

find the density

of it.

11

Design and

Development of

Android Performance

Testing Tool [16]

Mobile performance

declines due to

simultaneous application

usage; less efficient

testing tools exist; PTT

offers a strong, attractive

interface for accurate

results.

Increasing some

performance

indicators, such as

electricity, GPU, etc.

by researchers.

This work has

only one

indicator that

can increasing

the performance

of

DeepTestDroid

which is by

increasing

categories.

 Experiences of system-

level model-based GUI

testing of an android

application [17]

This paper discusses

model-based user

interface testing of

Android applications,

focusing on the BBC

News widget, using

open-source models and

tools.

TEMA lacks automatic

reverse-engineering

tools, but technical

limitations can prevent

it.

Our approach

was for both

black box and

white box

testing.

Automation of Android

Applications

Functional Testing

Using Machine

Learning Activities

Classification [18]

Using ML techniques,

mobile software

functional testing can be

automated by reusing

generic test scenarios.

The limitation of their

work is that they

implement only black-

box testing using

machine learning.

Deep

knowledge was

incorporated

into black-box

testing (UI

testing) for

automation.

 Automated Testing

with Machine Learning

Frameworks: A

Critical Analysis [19]

This paper analyzes

machine learning

frameworks in software

automation, focusing on

test performance,

accuracy, scope, time,

and knowledge

requirements while

measuring manual labor

effort to ensure excellent

outcomes and software

quality.

The study aims to

review and organize

previous work on

software testing and

machine learning,

enabling future

researchers and

engineers to create

rules for ML

approaches.

This work

incorporated

both deep

learning and

ML methods.

Testdroid: automated

remote UI testing on

Android [20]

The platform provides

test results that help

developers detect

potential crashes or

failures in different

media.

The testing limitations

arise when evaluating

applications that rely

on voice, gesture, or

movement input,

making it challenging

to simulate the actual

use context.

In the

paperwork, data

on human

interaction will

be collected and

analyzed to

generate test

inputs, aiming

to avoid any

simulation

problems.

12

Scripted GUI testing of

Android open-source

apps: evolution of test

code and fragility

causes [21]

“Grounded Theory”

methodology was used

for manual analysis of

differential files for test

classes, aiming to create

a comprehensive

classification system for

this paper.

The type of

investigated open-

source app was not

considered as a factor.

Open-source

apps wireframes

were tested in

the paper.

Automated Test

Generation for

Detection of Leaks in

Android Applications

[22]

Researchers have

developed an automated

method for finding

resource leak bugs in

Android applications

using a neutral flow of

GUI events. The

experimental analysis

supports the use of these

methodologies for

efficient, broad, and

automated tests.

Automatically

generate tests for

recurring behaviors in

Android GUIs using

static control-flow

analysis. Improve

execution and

monitoring, develop

test prioritization

strategies, and

automate major leak

detection.

This platform

automates

testing which is

trained by deep

learning and

ML approach.

13

Chapter 3

Materials and Method
3.1 Materials

In order to train the model for the black-box testing datasets, TensorFlow, Python, Kaggle, and

Rico, mobile app datasets for building data-driven design applications, were used.

● TensorFlow is an open-source framework developed by Google primarily for deep learning

applications. It also supports traditional machine learning. We used tensor flow for the pre-

training model.

● Python is commonly used for developing websites and software, task automation, data

analysis, and data visualization. We used Python because it is familiar to us and easy to use.

● Jupyter Notebook is for sharing computational documents and creating original web

applications. We used it to handle the code easily so that it could show the output quickly.

● Kaggle Notebook is a cloud-computed notebook used for codes that are computed on their

cloud servers. We used it because it is faster than Google Collab and easy to train the model.

● Django used for making a web application using our model. It takes image and view types

from frontend and processes them for black box and takes input data for the white box.

● Tailwind and DaisyUI are helping us to make beautiful frontends.

● Ajax sits between the frontend and the backend. Maintaining the UX is better. It is sending

images and other data to the backend. Then, when the backend sends the processed result, It

implements the result on the frontend without a refresh or extra request.

3.1.1 Dataset Collection

The dataset used in this study is called Rico. Mining Android applications created Rico while it

was running, using a combination of programmed and manual investigation [21]. The infrastructure

used for app mining in Rico does not require access to or modification of an app's source code.

Crowd workers accessed the applications through a web interface after downloading them from the

Google Play Store. The dataset includes photographs and hierarchies with semantic annotations for

Android applications' UI. For Whitebox testing, we considered 22 classes with 17713 data numeric

data. And we collected the data from Scripted GUI testing of Android open-source apps: evolution

of test code and fragility causes. The data is divided into six files. Because it was created using six

testing tools. These six testing tools were performed testing on the open-source application and

then recorded data to see the change ratio between app versions.

3.1.2 Dataset Exploration

Rico dataset consists of over 66,000 UI screens and hierarchies, with semantic annotations that

describe the meaning and usage of elements on the screen [23]. These annotations provide insights

into what different UI components, buttons, and icons signify. Semantic screenshots in Rico utilize

a distinctive color scheme, where each class is assigned a unique color. The mapping between

semantic concepts and their corresponding colors is documented in three files known as

"component_legend.json,” which correspond to specific component categories. For this study,

approximately 60,600 datasets were available. The datasets were sorted according to the

categorized UI screenshots of the apps. The sorting technique employed is known as

“crowdsourcing.”

Below Fig 3.1 are user interface displays from the dataset and their respective semantic annotations.

14

Fig 3.1: Screenshot of RICO Dataset

The class we considered for white box testing in the project is shown in the Table 3.1. In the left

column, these are the short form of classes for input and output and in the right column is the

explanation for understanding the classes.

Table 3.1: List of Classes

Class Explanation

Plocs Number of lines of code in the Project

Mod. Plocs Modified line of code in the project

Tlocs Total line of code of selected class file

Mod. Tlocs Modified line of code on Tlocs

Classes Number of classes in the project

Added Classes Number of added classes from the previous version

Deleted Classes Number of deleted classes from the previous version

Mod. Classes Number of Modified Class

Methods Total Methods of the Classes

Added Methods New added method from the previous version

Deleted Methods Deleted method from the previous version

Mod. Methods The modified method from the previous version

Classes with Mod. Methods Number of classes with the modified method

TLR Test LOCs Ratio

MTRL Modified Test LOCs Ratio

MRTL Modified Relative Test LOCs

TMR Total Method Ratio

MMR Modified Method Ratio

Tool Tool to perform the testing

3.1.3 Dataset Sampling

A UI was designed to facilitate sorting datasets based on categories. This UI feature is for managing

and organizing datasets. Sorting datasets based on categories can greatly improve the user

experience and make it easier for users to find and analyze specific data. It provides a clear structure

to the dataset. It reduced the likelihood of errors that may occur during manual data sorting or when

using complex commands. The automated process ensures accurate data organization, minimizing

potential mistakes that could arise from manual intervention. Semantic annotations provide

meaningful labels and metadata to categories, enabling users to comprehend the content and

context of each data group effortlessly. This, in turn, expedites data retrieval, making it easier for

users to find relevant information quickly. By capturing the inherent meaning and semantics of

categories, users can perform advanced queries and filtering operations with greater precision. This

15

capability enables users to uncover deeper insights and identify patterns that might be challenging

to detect using conventional sorting methods.

In Fig 3.2, these are the sample wireframes for black box testing. These are different wireframes

of different applications from component range low to high sequentially.

Fig 3.2: Data Sample for Black Box Testing

We merge all data from six files and then assign each row with its corresponding testing tools.

Then we remove blank data. And gave all non-numeric data a value. So, we can create the model

from it more easily. After more preprocessing, we applied machine learning data. Below Table 3.2

represents a sample dataset for white box testing, where the first 14 data are the input data, and last

8 data, which are colored, are the output data.

Table 3.2: Dataset Sample for White Box Testing

Plocs 1899 1899 20159 67267

Mod. Plocs 58 58 5021 7121

Tlocs 471 471 1746 1265

Mod. Tlocs 6 6 100 77

Classes 1 1 11 11

Added Classes 0 0 0 5

Deleted Classes 0 0 0 0

Mod. Classes 1 1 3 4

Methods 17 17 98 62

Added Methods 0 0 1 27

Deleted Methods 0 0 0 0

Mod. Methods 3 3 12 2

Classes with Mod.

Methods
1 1 2 2

Tool uiautomator espresso robolectric robotium

TLR 0.248025 0.248025 0.086611 0.018806

MTRL 0.012739 0.012739 0.05787 0.103914

MRTL 0.103448 0.103448 0.019916 0.010813

TMR 0.416209 0.416209 0.220071 0.959082

MCR 1 1 0.272727 0.666667

16

MMR 0.176471 0.176471 0.123711 0.057143

RFCR 1 1 0.666667 0.5

FCR 1 1 0.181818 0.333333

3.1.4 Dataset Processing

JSON files of the layouts were utilized to generate data, which was then classified into five density

categories based on the number of components present in the UI.

Fig 3.3 shows the flowchart of dataset preprocessing for black box testing where a png file has the

corresponding json file and then from the json file, the number of components gets extracted and

classify the image according to it.

Fig 3.3: Dataset Preprocess of Black Box Testing

17

Table 3.3: Density Class Example

Compone

nt Range

1-6 7-11 12-18 19-30 31-60

Density Very low Low Medium High Very high

Screensh

ots

Table 3.3 shows the component range and their corresponding density type and screenshots. The

component range was created based on the number of components presented in a wireframe. Then

each component was named by the density type and with the screenshots examples. Multiple

methodologies were employed to sort the data, but the final sorting method was chosen based on

its reliability compared to other methods.

For Whitebox, all the data is processed by MS Excel, pandas, and sklearn. There are ‘-’ on data. It

represented no change had been on the version or value cannot be calculated. So, we changed those

using -1. The number of blank rows was meager. So, we just deleted the blank row. Fig 3.4 shows

the altered dataset, and each where Plocs, Mod. Plocs, Tlocs, Mod.Tlocs, Classes, Added Classes,

Deleted Classes, Mod. Classes, Methods, Added Methods, Deleted Methods, Mod. Methods,

Classes with Mod. Methods, tool are the 14-input metrics and TLR, MTRL, MRTL, TMR, MMR

are the 8-output metrics.

18

Fig 3.4: Before and After of the Dataset Alteration

Fig 3.5 for white box testing, first, it starts with two sets of data: data from the test inputs and data

from the test results. Then combining these two sets of data into a single set of data that matches

input data with results. After merging, changing every '-' in the dataset with a '-1'. This step is meant

to handle values that are lost or can't be found. After that, getting rid of any data points that are

blank or empty. This cleaning step makes sure that the file only has information that is useful.

Lastly changing all the remaining data in the dataset to a consistent type, especially to floating-

point numbers. This step makes sure that the data is in the same format, so it can be analyzed or

processed further.

19

Fig 3.5: Dataset Preprocess of White Box Testing

3.1.5 Research Environment and Devices

A UI was designed to facilitate sorting datasets based on categories. Here is a screenshot of the UI.

Fig 3.6: Tools for Data Sorting

In Fig 3.6, the user has to set the directory path of the directory that the semantics annotations are

in. Then along with the wireframe, corresponding screenshot of the wireframe will also be loaded

and then the user can either select the density class just by looking at the congestions in the

wireframe or go to the next png file or delete the current png file. After selecting the density four

folders will be created which will be named dense 1, dense 2, dense 3, dense 4 and then finally the

density class that the user clicked only the wireframe will be stored in the corresponding folder to

it of the selected density class.

3.2 Method

In this project, for black box testing, six models have been trained and analyzed to see which model

performs better to determine the density of applications’ screenshots. For white box testing, a

20

model has been created which can automatically predict and generate the values of the tools such

as Robolectric.

3.2.1 Proposed Model

The proposed "DeepTestDroid" model was designed to address the mentioned problems and

perform UI testing using a deep learning approach. The implementation of the model utilized

MobileNetV3, ResNet50, EfficientNet_b0, EfficientNet_b1, and EfficientNetV2_b0 neural

networks for black box testing. Python was used for the performance, and specific libraries were

employed to handle the app layouts based on the created categories. And for white box testing

XGBRegressor, LinearRegression, ElasticNet, RandomForestRegressor, DecisionTreeRegressor

model has been trained and tested to see their performance.

MobileNetV3 is a convolutional neural network architecture widely adopted in various mobile

applications, including TensorFlow [24]. It offered the capability to run on embedded systems and

was implemented in small and large versions. We used MobileNetV3small and MobileNetV3large.

Fig 3.7: MobileNet Architecture

In the above Fig 3.7 the mobile net architecture is shown, where the input of the model was checked

by expansion convolutional, and the depth wise projection layer will be detected. The 1×1

expansion block is the core building block of the model. Depthwise separable convolution block

significantly reduces computation and parameters while maintaining performance. The SE module

block interacts with depthwise separable convolution and projection layer block. The projection

layer further transforms the feature maps, projects them into a new space, and generates the output.

ResNet50 is a state-of-the-art convolutional neural network model for image classification. It was

trained on ImageNet, a large-scale classification dataset [25].

21

Fig 3.8: ResNet Architecture

In the above Fig 3.8 the ResNet architecture is shown whereas after giving the input there will be

checking by zero padding and step by step work after that the output will be average pooling.

EfficientNet_b0 is another convolutional neural network architecture trained on a vast dataset from

the ImageNet database [26]. It can classify images into one thousand object categories, including

various objects and animals.

EfficientNet_b1 is a scalable convolutional neural network architecture that uniformly scales

dimensions using a compound coefficient [27].

EfficientNetV2_b0 is a convolutional neural network architecture that performs highly on image

classification tasks while maintaining parameters and computational cost efficiency [28].

22

Fig 3.9: EfficientNet Architecture

In Fig 3.9, EfficientNet employs a structural component known as the "Efficient Block," which

integrates depthwise separable convolutions with inverted residual connections, akin to the

architectural design of MobileNetV2. These blocks are designed to maximize the balance between

the size of the model and its performance. The concept of depth scaling pertains to the manipulation

of the network's layer count, whereas width scaling involves modifying the number of channels

within each layer. Additionally, resolution scaling entails the alteration of the input image

dimensions.

For the white box, we can use the ML model. We tested out five models, XGBRegressor,

LinearRegression, ElasticNet, RandomForestRegressor, DecisionTreeRegressor and among them

XGBRegressor, DecisionTreeRegressor and RandomForestRegressor gave the best result. We used

these models by sklearn python learn.

XGBRegressor is a highly effective machine learning model for regression tasks [29]. It is a

member of the XGBoost (Extreme Gradient Boosting) family of ensemble learning algorithms,

which are renowned for their high predictive accuracy and efficient performance. XGBRegressor

is designed to manage regression problems in which it is necessary to predict continuous numerical

values.

23

Fig 3.10: XGBoost Architecture

Fig 3.10 shows the architecture of XGBoost, using decision trees as the base learners. These

decision trees are known as CART, which stands for Classification and Regression Trees.

In the fields of ML and data analysis LinearRegression is a standard and useful statistical method

[30]. To predict continuous numerical values from input features, this supervised learning approach

is employed. The model presupposes that the input variables have a linear connection with the

outcome variable. Finding the line that minimizes the error between predicted and target values is

the purpose of Linear Regression.

Fig 3.11: LinearRegression Architecture

24

Fig 3.11 shows the architecture of LinearRegression architecture. Decision Trees and Linear

Regression are widely used in predictive modeling to determine patterns and correlations between

input data and target variables. Linear regression uses linear equations, while decision trees have

hierarchical structures with core nodes indicating decisions and leaf nodes reflecting predictions.

These strategies are based on criterion-based data splitting and feature values.

Ridge regularization approaches are frequently employed in machine learning and statistics for

applications such as regression and feature selection [31]. By balancing feature selection and

regularization, the ElasticNet model addresses some of the shortcomings of Lasso and Ridge

regression.

Fig 3.12: ElasticNet Architecture

Fig 3.12 represents the architecture of ElasticNet. CNN feature extraction relies on the

convolutional layer to filter incoming data to find patterns, edges, and textures. The output layer

predicts these properties using fully connected layers. The loss function measures the gap between

expected outputs and target values, driving network learning. Image or segmentation regression

tasks use Mean Squared Error (MSE) as a loss function. Final loss is the cumulative value of the

specified loss function utilizing anticipated outputs and ground truth values.

RandomForestRegressor is a strong ML model from the ensemble learning family. The

RandomForestRegressor algorithm combines the predictions of different decision tree models [32].

Each decision tree is trained using a random subset of the training data and features. When

compared to individual decision trees, the randomness and variety in the training process make the

model more resilient and less prone to overfitting.

25

Fig 3.13: RandomForestRegressor Architecture

In the above Fig 3.13 it shows the RandomForestRegressor is a strong ML model from the

ensemble learning family. The RandomForestRegressor algorithm combines the predictions of

different decision tree models. Each decision tree is trained using a random subset of the training

data and features.

DecisionTreeRegressor is a regression-based supervised machine learning model [33]. It is a

decision tree method, which means that it divides the feature space into regions and makes

predictions based on the average or mean of the target variable within each zone.

Fig 3.14: DecisionTreeRegressor Architecture

26

In this Fig 3.14 it shows the DecisionTreeRegressor is a regression-based supervised machine

learning model. It is a decision tree method, which means that it divides the feature space into

regions and makes predictions based on the average or mean of the target variable within each

zone. Here the output of two tree predictions is given by n number of trees which will be the final

prediction.

3.2.2 Experiment Setup

We used multiple models in this project. and a few models used for image and other with numeric

value. To get the best accuracy out of the models we fine-tune hyperparameters. Below, Table 3.4

shows the configuration used for black box testing’s model training.

Table 3.4: Configuration of Black Box Testing

Hyperparameters Value(s)

Image Size 224 x 224 x 3

Class Mode Categorical

Transfer Learning Weights ImageNet

Validation Split 20%

Pooling Max-Pooling

Activation
Hidden Layers ReLu

Output Layer Softmax

Optimizer Adam

Loss CategoricalCrossentropy

Epoch 100

Batch size 32

Fig 3.15 below shows the model configuration we used for all the models we trained and tested

for black box testing.

27

Fig 3.15: Model Configuration of Black Box Testing

And for the white box, test split, max depth and data type are hyperparameters. Here, the test split

is 30%, max depth is 8 and data type is float. All of the corresponding models have been trained

with the same settings.

3.2.3 Algorithm/Model Formulation

28

Machine learning and deep learning are part of Artificial intelligence. However, the way both works

is different. Machine learning makes decisions about what it learns based on given data. On the

other hand, deep learning makes a layer from the given data and then makes its own decision based

on that layer. Deep learning is most of the time used for image-type data. Where machine learning

works with numeric data, in this project, we have to use both of them because of our dataset. For

Whitebox, we had numeric data, so we chose machine learning. Furthermore, for the black box,

we had image-type data. Data had to be preprocessed for both black box and white box testing

before training the model.

Algorithm: For Blackbox, after experimenting with a few models, we had the best accuracy with

MobileNetV3Large. So, we implement the model in our final product. We take the wireframe

screenshot and the view type from the user. Then resize the screenshot into a 224 x 224 numpy

array. Then predict the dense class through the model. Then we gave suggestions based on view

type and the dense class.

Fig 3.16: Model Creation Flowchart for Black Box Testing

For black box testing, the first step of the model creation is collecting the data. The second step is

classifying the data and sorting it according to the classification. The third step is pre-training the

model. Image class identity step is essential for both the second step and final step which is model

training. Fig 3.16 summarizes all the steps.

We experimented with a few models for the white box too. Then we had the highest R2 score with

XGBoostRegressor. So, we used this model in our final product. We take a series of code

information alongside which testing tools it may use. Then we convert all the data into a float list.

Then through the model, we generate TLR, MTRL, MRTL, TMR, MCR, MMR, RFCR and FCR.

29

Fig 3.17: Model Creation Flowchart for White Box Testing

For white box testing, the first step is collecting data. The second step is merging all data from six

files and assigning each row with its corresponding testing tools. The third step is processing the

data after alteration that has been discussed in section 3.1.4 and finally in the last step, training the

model with the processed data Fig 3.17 highlights all the steps.

3.2.4 Obtained Results of Models

This study for black box testing shows the comparison among six models, MobileNetV3Large,

MobileNetV3Small, EfficientNetB0, EfficientNetB1, EfficientNetV2B0 and ResNET50 models.

And for white box testing, comparison between five models, XGBRegressor, LinearRegression,

ElasticNet, RandomForestRegressor and DecisionTreeRegressor.

Table 3.5: Results of the Models of Black Box Testing

Name

Test
Validation

Accuracy

Train

Accuracy Loss Accuracy

MobileNetV3Lar

ge
0.898 0.746 0.735 0.778

MobileNetV3Sma

ll
0.980 0.687 0.681 0.661

EfficientNetB0 0.923 0.712 0.711 0.688

EfficientNetB1 1.003 0.627 0.628 0.611

EfficientNetV2B0 0.942 0.688 0.715 0.642

30

ResNET50 1.081 0.624 0.596 0.584

In Table 3.5, the ResNet50 model demonstrated the greatest test loss, while the MobileNetV3Large

model attained the lowest test loss. The RestNet50 model had the lowest test precision, while the

MobileNetV3Large model achieved the highest. ResNet50 performed poorly on the dataset

compared to other models evaluated, while MobileNetV3Large performed the best. Despite the

fact that all models were trained on the ImageNet dataset, disparities in architecture led to varying

data outcomes.

Table 3.6: Results of the Models of White Box Testing

Name

MSE

R2 Score

XGBRegressor 0.212 0.958

ElasticNet 0.910 0.123

LinearRegression 0.881 0.192

RandomForestRegressor 0.396 0.873

DecisionTreeRegressor 0.514 0.837

In Table 3.6, the R2 score of XGBRegressor, RandomForestRegressor and DecisionTreeRegressor

models performed better than ElasticNet and LinearRegression model as we can see there is a huge

difference in the scores. Also, all three regressor models have lower MSE compared to the other

two models. So, XGBRegressor model’s overall performance is better than both

RandomForestRegressor and DecisionTreeRegressor.

3.2.5 Analysis of Models

In this study, every model was trained with various configurations, classes, and datasets, and for

the final evaluation, a consistent design, classes, and datasets were used to effectively evaluate all

models. 10,000 data points out of the available 60,600 semantic annotations were used to validate

the model.

Fig 3.18: MobileNetV3Large Results

Fig 3.18 shows the average training and validation curves for loss and accuracy for

MobileNetV3Large. The model performs well on testing and validation data, as we can see no

difference between training loss and validation loss.

31

Fig 3.19: MobileNetV3Small Results

Fig 3.19 shows the average training and validation curves for loss and accuracy for

MobileNetV3Small. This model’s performance is poor as there is a big gap between the training

and validation loss.

Fig 3.20: EfficientNetB0 Results

Fig 3.20 shows the average training and validation curves for accuracy and loss for EffecientNetB0.

The model performs better than MobileNetV3Small as the big gap between the training and

validation loss is lesser than the MobileNetV3Small.

Fig 3.21: EfficientNetB1 Results

Fig 3.21 shows the average training and validation curves for accuracy and loss for EffecientNetB1.

The model performs poorer than EfficientNetB0 as the big gap between the training and validation

loss is wider than the EfficientNetB0.

32

Fig 3.22: EfficientNetV2B0 Results

Fig 3.22 shows the average training and validation curves for accuracy and loss for EffecientNetB1.

The model performs better than EfficientNetB1 as the big gap between the training and validation

loss is lesser than the EfficientNetB1.

Fig 3.23: ResNET50 Results

Fig 3.23 shows the average training and validation curve for loss and accuracy for ResNET50. The

model didn't perform well on validation data from the loss curve, as there is a huge gap between

training and validation loss.

3.2.6 Performance Analysis of Models

Multiple deep-learning models were experimented with, including variations that were

significantly different from each other. All models were trained using the same configuration,

classes, and data. The results from the experiments can be observed in the provided Table or

diagram.

The highest test loss was observed in the ResNet50 model, while the lowest test loss was achieved

by the MobileNetV3Large model. The RestNet50 model had the most insufficient test accuracy,

whereas the MobileNetV3Large model reached the highest. Among the tested models, ResNet50

performed poorly on the dataset, while MobileNetV3Large emerged as the best-performing model.

Although all models were trained on the ImageNet dataset, variations in architecture led to

differences in data outcomes which can be seen in Fig 3.24.

33

Fig 3.24: Result Comparison of Black Box Testing

In white box testing, we can see that among XGBRegressor, LinearRegression, ElasticNet,

RandomForestRegressor, DecisionTreeRegressor; XGBRegressor, RandomForestRegressor, and

DecisionTreeRegressor models performed the best because their R2 score is higher and MSE score

is lower than other models. The LinearRegression model did not perform well because the dataset

and the output are not linear. As, XGBRegressor model has the highest R2 score and lowest MSE,

it is the best fit out of them all which can be seen in Fig 3.25.

Fig 3.25: Result Comparison of White Box Testing

34

3.2.7 Design/Framework

In this project, there are two-part Whitebox and Blackbox. For Blackbox, we upload images and

then select the view type. Then the image goes through the trained mobileNetV3Large model and

classifies its denseness. After classifying, we manually suggest according to the view type and

dense class. Fig 3.26 gives a visual representation of the workflow of it.

Fig 3.26: Workflow of the Black Box Testing

For the Whitebox, we take the code information and then send that information to the

XGBoostRegressor to process. After processing data, the model produces metrics value according

to the tool which has been represented in Fig 3.27.

Fig 3.27: Workflow of the White Box Testing

35

3.3 Summary

Rico, a dataset for mining Android applications produced through a combination of programmed

and manual investigation, is utilized in this study. The infrastructure for app mining in Rico does

not require access to the source code, and crowd workers download applications from the Google

Play Store and access them via a web interface. The dataset contains images and hierarchies with

semantic annotations for Android application user interfaces. Whitebox testing consists of 22

classes with 17713 numeric data, gathered from scripted GUI testing of Android open-source

applications. Data is divided into six files, and JSON layout classification files are generated. The

final sifting technique was selected due to its dependability. The Deep learning-based

"DeepTestDroid" model was designed to address these issues and conduct UI testing. The

performance of the model is determined by MobileNetV3, ResNet50, EfficientNet_b0,

EfficientNet_b1, and EfficientNetV2_b0 neural networks and Python. For white box testing, the

XGBRegressor, LinearRegression, ElasticNet, RandomForestRegressor, and

DecisionTreeRegressor models were trained and evaluated. ResNet50 had the highest test loss and

lowest test accuracy, while MobileNetV3Large had the best. Deep learning black box testing and

white box testing are used to test app density UI screenshots. The XGBRegressor model provided

the best fit due to its higher R2 score and lower MSE, indicating its superior overall efficacy. These

models are trained on ImageNet, but architecture affects data results.

36

Chapter 4

 Results and Discussion

4.1 Project Prototype

The prototype is an early version of a final product. We created a website as our prototype to prove

the motivation of this project [34]. We used Django as a web framework. We chose Django because

it utilizes Python for its instruction. Our model was created using Python, giving much more

flexibility than many other frameworks. We also used sklearn, tensorflow, keras, numpy, pandas

and many more libraries for this project. We use Tailwind and daisyUI for the front end and Ajax

for passing the value between the front and back end. Our website has two sections, a black box,

and a white box. In the black box section, we have an image input field and a view type radio button

to select the view type. After selecting the image and type, input data will pass to the backend if

the user presses the process button. Then the suggestion and the message were sent to the frontend

from the backend. For the white box tab, we have a dropdown of the testing tools and 14 number

input field. After submitting the field, the generated value will be on the window's right side. Fig

4.1 and Fig 4.2 is the UI of the website which has been built for user to perform the black box as

well as the white box testing in the same platform. The UI has been designed to make it as user

friendly as possible.

Fig 4.1: Frontend of the Black Box Testing

37

Fig 4.2: Frontend of the White Box Testing

4.2 Obtained Results

To test the prototype, both black box and white box testing have been performed. For black box

testing, the MobileNetV3Large model and the XGBRegressor model have been chosen based on

their performance, which has been elaborated in Chapter 3.

In Table 4.1 every screenshot of wireframe is the input. The same input images were evaluated

against multiple category types which is Signup/Login, E-commerce/Shop, Map/Camera, Social

Media/Gallery and Other which will be selected by the user. The output of each input image has

been represented from the second to the last column. The second column represents the density

class, which can be very low, low, medium, high, or very high, as determined by our model. Then

different suggestions for each signup or login, e-commerce or shop, map or camera, social media

or gallery, and other categories have been generated manually, which are shown from the third

column to the last for each input image.

Table 4.1: Results of Black Box Testing

Input Images
Density

Class

Signup/Logi

n

Suggestion

E-

commerce/Sho

p

Suggestion

Map/Camer

a

Suggestion

Social

Media/Galler

y

Suggestion

Other

Suggestion

Very

High

Reducing

Element

Will be

better

View is Fine

Reducing

Element

Will be

better

Reducing

Element

Will be

better

Reducing

Element

Will be

better

38

Low
View is

Great

You can Add

more

elements

View is

Great
View is Fine

If the

purpose

of the

view is

showing

data, then

adding

more

elements

will be

good.

otherwise

, fine.

Very

High

Reducing

Element

Will be

better

View is Fine

Reducing

Element

Will be

better

Reducing

Element

Will be

better

Reducing

Element

Will be

better

High

Reducing

Element

Will be

better

View is Fine

Reducing

Element

Will be

better

View is Fine

If it’s a

landing

page, then

reducing

the

element

will be

better.

Otherwise

, fine

Low
View is

Great

You can Add

more element

View is

Great
View is Fine

If the

purpose

of the

view is

showing

data, then

adding

more

elements

will be

good.

otherwise

, fine.

39

Very

Low

View is

Great

You can Add

more

elements

View is

Fine

You can add

more

element

If the

View has

lots of

text, then

reduce it.

adding

more

element

will be

good.

Mediu

m

View is

Fine
View is Great

View is

Fine

View is

Great

View is

fine

For white box testing, we checked the same input for all testing tools. In Table 4.2, the first column

represents all 13-input metrics. Five inputs have been put to the test with selected existing tools

such as Espresso, Robolectric, Robotium, and Uiautomator.

Table 4.2: Inputs of White Box Testing

Metrics A B C D E

Plocs 1899 67267 20159 20159 3575

Mod. Plocs 58 7121 5021 5021 -1

Tlocs 471 1265 1746 1746 0

Mod. Tlocs 6 77 100 100 -1

Classes 1 11 11 11 -1

Added Classes 0 5 0 0 -1

Deleted Classes 0 0 0 0 -1

Mod. Classes 1 4 3 3 -1

Methods 17 62 98 98 -1

Added Methods 0 27 1 1 -1

Deleted Methods 0 0 0 0 -1

Mod. Methods 3 2 12 12 -1

Classes with Mod. Methods 1 2 2 2 -1

In Table 4.3 and 4.4, for every input with each selected tool, there are different outputs of eight

different metrics, which are predicted by the XGBRegressor model.

40

Table 4.3: Tool Specified Outputs of White Box Testing

 Espresso Robolectric

A

TLR 0.25 MTRL 0.01

MRTL 0.11 TMR 0.19

MCR 1 MMR 0.17

RFCR 1 FCR 1

TLR 0.25 MTRL 0.01

MRTL 0.11 TMR 0.19

MCR 1 MMR 0.17

RFCR 1 FCR 1

B

TLR 0.25 MTRL 0.01

MRTL 0.11 TMR 0.19

MCR 1 MMR 0.17

RFCR 1 FCR 1

TLR 0.25 MTRL 0.01

MRTL 0.11 TMR 0.19

MCR 1 MMR 0.17

RFCR 1 FCR 1

C

TLR 0.25 MTRL 0.01

MRTL 0.11 TMR 0.19

MCR 1 MMR 0.17

RFCR 1 FCR 1

TLR 0.25 MTRL 0.01

MRTL 0.11 TMR 0.19

MCR 1 MMR 0.17

RFCR 1 FCR 1

D

TLR 0.25 MTRL 0.01

MRTL 0.11 TMR 0.19

MCR 1 MMR 0.17

RFCR 1 FCR 1

TLR 0.25 MTRL 0.01

MRTL 0.11 TMR 0.19

MCR 1 MMR 0.17

RFCR 1 FCR 1

E

TLR 0.25 MTRL 0.01

MRTL 0.11 TMR 0.19

MCR 1 MMR 0.17

RFCR 1 FCR 1

TLR 0.25 MTRL 0.01

MRTL 0.11 TMR 0.19

MCR 1 MMR 0.17

RFCR 1 FCR 1

Table 4.4: Tool Specified Outputs of White Box Testing

 Robotium Uiautomator

A

TLR 0.25 MTRL 0.01

MRTL 0.11 TMR 0.19

MCR 1 MMR 0.17

RFCR 1 FCR 1

TLR 0.25 MTRL 0.01

MRTL 0.11 TMR 0.19

MCR 1 MMR 0.17

RFCR 1 FCR 1

B

TLR 0.25 MTRL 0.01

MRTL 0.11 TMR 0.19

MCR 1 MMR 0.17

RFCR 1 FCR 1

TLR 0.25 MTRL 0.01

MRTL 0.11 TMR 0.19

MCR 1 MMR 0.17

RFCR 1 FCR 1

C

TLR 0.25 MTRL 0.01

MRTL 0.11 TMR 0.19

MCR 1 MMR 0.17

RFCR 1 FCR 1

TLR 0.25 MTRL 0.01

MRTL 0.11 TMR 0.19

MCR 1 MMR 0.17

RFCR 1 FCR 1

D

TLR 0.25 MTRL 0.01

MRTL 0.11 TMR 0.19

MCR 1 MMR 0.17

RFCR 1 FCR 1

TLR 0.25 MTRL 0.01

MRTL 0.11 TMR 0.19

MCR 1 MMR 0.17

RFCR 1 FCR 1

E

TLR 0.25 MTRL 0.01

MRTL 0.11 TMR 0.19

MCR 1 MMR 0.17

RFCR 1 FCR 1

TLR 0.25 MTRL 0.01

MRTL 0.11 TMR 0.19

MCR 1 MMR 0.17

RFCR 1 FCR 1

41

4.3 Discussion

This work is based on black box and white box testing using deep learning method. The work has

come to a solution of testing the UI screenshots of apps density using black box testing. The

accuracy of the models for black box testing is far better than expected but it can be more developed

by training the models again. The white box testing model can eliminate the need for other testing

tool as it can predict the values of the existing tool within the DeepTestDroid platform.

4.4 Summary

Black box and white box tests were done on the prototype. Chapter 3 describes the performance of

the MobileNetV3Large and XGBRegressor models, which were chosen for black box testing. In

Table 4.1, every wireframe screenshot is input. The same input photographs were tested against

Signup/Login, E-commerce/Shop, Map/Camera, social media/Gallery, and Other, which the user

will choose. Each input image's output is shown in the second to last column. Our model determines

the class in the second column: very low, low, medium, high, or very high. Then manually created

choices for signup or login, e-commerce or shop, map or camera, social media or gallery, and other

categories are shown from the third column to the last for each input image. All testing tools

checked the same input for white box testing. The first column of Table 4.2 lists all 13 input metrics.

Five inputs were tested with Espresso, Robolectric, Robotium, and Uiautomator. The

XGBRegressor model predicts eight metrics for each input with each tool in Table 4.3. Deep

learning is used for black box and white box testing in this work. The work uses black box testing

to test app density UI screenshots. The black box testing models' accuracy is better than expected,

but training them again can improve it. The white box testing model is capable of predicting the

values of existing testing tools on DeepTestDroid, eliminating the need for extra tools.

42

 Chapter 5

 Conclusion
5.1 Overall Contributions

Black box testing is a strong testing method since it tests a system from beginning to end. A tester

can replicate user action and check to see if the system fulfills its promises, just as end users don't

care how a system is written or designed and expect to get a suitable response to their requests. A

black box test assesses every relevant subsystem along the route, including the UI/UX, database,

dependencies, and integrated systems, as well as the web server or application server. Deep

learning-based app testing solutions can help development teams perform both black-box and

white-box testing with more efficiency during the design and analysis phases.

This study is based on deep learning to develop a deep learning-based system to forecast exam

results. This paper uses an innovative technique by combining deep insight and black-box testing.

Six black boxes and test data must be produced for a deep learning algorithm. The goal is to use

the deep learning algorithm to make the most accurate forecast possible, ensuring the dependability,

performance, and longevity of Android applications. Based on the quantity of components in the

UI layout, five categories must be created for automated UI testing. These categories must be used

to order the data. The sorted data can be used to train a model. Finally, a framework for UI testing

of Android applications will be created, classifying the layouts into the appropriate groups. such as

EfficientNetB3, ResNet50, and MobileNetV3, are used so the model continuously improves. This

project's model will generate the values of existing testing tools for white box testing, thereby

reducing the need for multiple testing tools. In order to determine the most effective model, the

XGBRegressor, LinearRegression, ElasticNet, RandomForestRegressor, and

DecisionTreeRegressor models have been evaluated.

This study provides quite an acceptable accuracy rate for black-box testing UI by training the

models accordingly. Testing manually is time-consuming, so with the deep learning method, it

decreases a lot of hassle. Therefore, this study will benefit the developers who work on testing the

apps with UI screenshots as well as reduce the need for using other testing tools to perform white

box testing.

5.2 Limitations and Future Works

The limited dataset is one of the study's primary limitations. We experimented with multiple deep

learning models. Some of the variations of themselves Some of them are completely different from

each other. Here, every single model ran with the same configuration, classes, and data. From the

top table, or diagram, we can see multiple things. Our highest test loss was in ResNet50. And the

lowest was MobileNetV3Large. Our lowest test accuracy was RestNet50. And the highest test

accuracy was MobileNetV3Large. For our dataset, ResNet50 was the worst model. But our best

model was MobileNetV3Large. even though they are all pre-train models on the ImageNet

dataset. But they still produce variations of data because of their architecture.

We have approximately 60,600 datasets, but for our model we have used 10,000, which were

categorized by the layouts of the apps and divided into 4 categories of layout density and labeled

as density 1 to 4. We sorted these datasets according to our categorized UI screenshots of the apps.

This data sorting technique is called the crowdsourcing technique. The quality of the images is

another drawback of our research. Since the photographs are pulled from many web sources, their

quality is considered when choosing them. Another limitation of our study is the quality of the

images. The majority of the photos were taken in close proximity and with lots of light. Users who

provide images that were taken in low light or at a great distance might not provide an accurate

43

prediction. In that instance, the user's capacity to capture an accurate image of the skin will be

crucial to testing.

Finally, as part of the future work for this experiment, we want to add more data to the dataset and

categorize more photographs from Android applications. With photographs taken from various

perspectives and lighting conditions, we hope to produce a dataset that is more adaptable.

Furthermore, training models often take a lot of time. As more photographs are added to the

collection, the processing time will increase noticeably. In this case, model training can be

accelerated by using distributed file systems. We intend to integrate white-box testing using deep

learning in the future because the development is currently on hold owing to a lack of datasets and

available time. More architectures, including InceptionResNetV2 and InceptionV3, will be

included in the future to confirm and contrast our current findings and offer a better solution.

44

Bibliography

1. D. Lì, G. Advisors, Rubèn, T. Liesa, and X. Gù Ardia Latorre, “A Deep Learning Based

Approach to Automated App Testing.”

2. I. Banerjee, B. Nguyen, V. Garousi, and A. Memon, “Graphical user interface (GUI)

testing: Systematic mapping and repository,” Information and Software Technology,

vol. 55, no. 10. pp. 1679–1694, Oct. 2013. doi: 10.1016/j.infsof.2013.03.004.

3. E. Alégroth, R. Feldt, and L. Ryrholm, “Visual GUI testing in practice: challenges,

problemsand limitations,” Empir Softw Eng, vol. 20, no. 3, pp. 694–744, Jun. 2015, doi:

10.1007/s10664-013-9293-5.

4. R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S. Malek and A. Stavrou, "A whitebox

approach for automated security testing of Android applications on the cloud," 2012 7th

International Workshop on Automation of Software Test (AST), Zurich, Switzerland,

2012, pp. 22-28, doi: 10.1109/IWAST.2012.6228986.

5. Y. Li, Z. Yang, Y. Guo and X. Chen, "Humanoid: A Deep Learning-Based Approach to

Automated Black-box Android App Testing," 2019 34th IEEE/ACM International

Conference on Automated Software Engineering (ASE), San Diego, CA, USA, 2019, pp.

1070-1073, doi: 10.1109/ASE.2019.00104.

6. D. Lì, G. Advisors, Rubèn, T. Liesa, and X. Gù Ardia Latorre, “A Deep Learning Based

Approach to Automated App Testing.”

7. A. Vilhunen, “User interface test automation for an Android application,” User interface

test automation for an Android application, May 16, 2022.

8. C. Hu and I. Neamtiu, "Automating GUI testing for Android applications," in

Proceedings of the 6th International Workshop on Automation of Software Test (AST

'11), New York, NY, USA, 2011, pp. 77-83, DOI: 10.1145/1982595.1982612.

9. A. Rosenfeld, O. Kardashov, and O. Zang, “Automation of Android Applications Testing

Using Machine Learning Activities Classification,” arXiv.org, Sep. 04, 2017.

10. N. Paul and R. Tommy, "An Approach of Automated Testing on Web Based Platform

Using Machine Learning and Selenium," 2018 International Conference on Inventive

Research in Computing Applications (ICIRCA), Coimbatore, India, 2018, pp. 851-856,

DOI: 10.1109/ICIRCA.2018.8597297.

11. F. Ricca, A. Marchetto and A. Stocco, "AI-based Test Automation: A Grey Literature

Analysis," 2021 IEEE International Conference on Software Testing, Verification and

Validation Workshops (ICSTW), Porto de Galinhas, Brazil, 2021, pp. 263-270, DOI:

10.1109/ICSTW52544.2021.00051.

12. A. Méndez-Porras, J. Alfaro-Velasco, and A. Martínez, “Evaluation of an Automated

Testing Framework: A Case Study,” Evaluation of an Automated Testing Framework: A

Case Study.

13. K. Moran, M. Linares-Vasquez, C. Bernal-Cardenas, C. Vendome and D. Poshyvanyk,

"CrashScope: A Practical Tool for Automated Testing of Android Applications," 2017

IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-

C), Buenos Aires, Argentina, 2017, pp. 15-18, doi: 10.1109/ICSE-C.2017.16.

14. I. K. Villains, E. A. B. Costa, and A. C. Dias-Neto, “Automated Mobile Testing as a

Service (AM-TaaS),” in Proceedings - 2015 IEEE World Congress on Services,

SERVICES 2015, Aug. 2015, pp. 79–86. DOI: 10.1109/SERVICES.2015.20.

15. B. Mishra et al., “Privacy Protection Framework for Android,” IEEE Access, vol. 10, pp.

7973–7988, 2022, DOI: 10.1109/ACCESS.2022.3142345.

16. S. Khan, Z. Jiangbin, and A. Wahab, “Design and Development of Android Performance

Testing Tool,” in 2020 IEEE Conference on Big Data and Analytics, ICBDA 2020, Nov.

2020, pp. 57–60. DOI: 10.1109/ICBDA50157.2020.9289714.

17. T. Takala, M. Katara, and J. Harty, “Experiences of system-level model-based GUI

testing of an android application,” in Proceedings - 4th IEEE International Conference

on Software Testing, Verification, and Validation, ICST 2011, 2011, pp. 377–386. DOI:

45

10.1109/ICST.2011.11.

18. A. Rosenfeld, O. Kardashov, and O. Zang, “Automation of Android Applications

Functional Testing Using Machine Learning Activities Classification,” in Proceedings -

International Conference on Software Engineering, May 2018, pp. 122–132. DOI:

10.1145/3197231.3197241.

19. S. Fatima, B. Mansoor, L. Ovais, S. A. Sadruddin, and S. A. Hashmi, “Automated

Testing with Machine Learning Frameworks: A Critical Analysis,” MDPI, Jul. 28, 2022.

20. J. Kaasila, D. Ferreira, V. Kostakos, and T. Ojala, “Testdroid: Automated remote UI

testing on android,” in Proceedings of the 11th International Conference on Mobile and

Ubiquitous Multimedia, MUM 2012, 2012. DOI: 10.1145/2406367.2406402.

21. Scripted GUI testing of Android open-source apps: evolution of test code and fragility

causes, doi.org/10.1007/s10664-019-09722-9

22. H. Zhang, H. Wu, and A. Rountev, “Automated test generation for detection of leaks in

Android applications,” in Proceedings - 11th International Workshop on Automation of

Software Test, AST 2016, May 2016, pp. 64–70. DOI: 10.1145/2896921.2896932.

23. B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li, J. Nichols, R. S.

Kumar, "Rico: A Mobile App Dataset for Building Data-Driven Design Applications," in

Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI),

2017, pp. 4237-4249.

24. Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,

Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig

Adam; Proceedings of the IEEE/CVF International Conference on Computer Vision

(ICCV), 2019, pp. 1314-1324

25. Mo, N., Yan, L., Zhu, R., & Xie, H. (2019, January 30). Class-Specific Anchor Based

and Context-Guided Multi-Class Object Detection in High-Resolution Remote Sensing

Imagery with a Convolutional Neural Network. Remote Sensing, 11(3), 272, doi:

10.3390/rs11030272

26. Makanapura, N., Sujatha, C., Patil, P. R., & Desai, P. (2022, January 1). Classification of

plant seedlings using deep convolutional neural network architectures. Journal of

Physics: Conference Series, 2161(1), 012006, DOI: 10.1088/1742-6596/2161/1/012006

27. Jie, Y., Ji, X., Yue, A., Chen, J., Deng, Y., Chen, J., & Zhang, Y. (2020, December 21).

Combined Multi-Layer Feature Fusion and Edge Detection Method for Distributed

Photovoltaic Power Station Identification. Energies, 13(24), 6742.

28. V. -T. Hoang and K. -H. Jo, "Practical Analysis on Architecture of EfficientNet," 2021

14th International Conference on Human System Interaction (HSI), Gdańsk, Poland,

2021, pp. 1-4, DOI: 10.1109/HSI52170.2021.9538782.

29. Y. Wang, Z. Pan, J. Zheng, L. Qian, and M. Li, “A hybrid ensemble method for pulsar

candidate classification - Astrophysics and Space Science,” SpringerLink, Aug. 29, 2019.

30. D.-H. Min and H.-K. Yoon, “Suggestion for a new deterministic model coupled with

machine learning techniques for landslide susceptibility mapping - Scientific Reports,”

Nature, Mar. 23, 2021.

31. Y. Zhou, Y. Bai, S. S. Bhattacharyya and H. Huttunen, "Elastic Neural Networks for

Classification," 2019 IEEE International Conference on Artificial Intelligence Circuits

and Systems (AICAS), Hsinchu, Taiwan, 2019, pp. 251-255, doi:

10.1109/AICAS.2019.8771475.

32. A. Verikas, E. Vaiciukynas, A. Gelzinis, J. Parker, and M. Olsson, “Electromyographic

Patterns during Golf Swing: Activation Sequence Profiling and Prediction of Shot

Effectiveness,” Sensors, vol. 16, no. 4, p. 592, Apr. 2016, doi: 10.3390/s16040592.

33. E. Jumin, N. Zaini, A. N. Ahmed, S. Abdullah, M. Ismail, M. Sherif, A. Sefelnasr, and A.

El-Shafie, "Machine learning versus linear regression modelling approach for accurate

ozone concentrations prediction," Environmental Science and Pollution Research, vol.

27, no. 1, pp. 713-725, May 2020. DOI: 10.1080/19942060.2020.1758792.

34. https://github.com/434huzaifa/DeepTestDroid?fbclid=IwAR1bYQ1KV2PM0J5IRJWWx

DArs5EAzYdLGCmcuQl6Kae3fd4PjAwumNVvPkU

https://github.com/434huzaifa/DeepTestDroid?fbclid=IwAR1bYQ1KV2PM0J5IRJWWxDArs5EAzYdLGCmcuQl6Kae3fd4PjAwumNVvPkU
https://github.com/434huzaifa/DeepTestDroid?fbclid=IwAR1bYQ1KV2PM0J5IRJWWxDArs5EAzYdLGCmcuQl6Kae3fd4PjAwumNVvPkU

46

Appendix A

Mapping of Course and Program Outcomes

CSE400-A

Program Outcomes:

PO1 (Engineering Knowledge): To ensure the accuracy of the testing for black box and white box

using deep learning.

PO4 (Investigation): Appium is an open-source tool for automating native, mobile web, and

hybrid applications on iOS mobile, Android mobile, and Windows desktop platforms.

CO Details Knowledge Profile (K) Engineering problem (EP)

CO1 To ensure the

accuracy

 of the testing for

black box and white

box using deep

learning.

(i) Background [K1,

K2, K3]

K1: To ensure accuracy.

 of the testing for black

box and white box

using deep learning.

K2: Appium is an open-

source tool for

automating native, mobile

web, and hybrid

applications on iOS

mobile, Android mobile,

and Windows desktop

platforms.

K3: Automated android

application testing using

deep learning.

i) Background

[EP1]

K3: Appium is an

open-source tool

for automating

native, mobile web,

and hybrid

applications on iOS

mobile, Android

mobile, and

Windows desktop

platforms.

K4: Testing

architecture

followed by

Appium – Junit and

JaCoCo.

K5: Test cases

design and

automation.

K8: Literature

Paper review on

black box and

white box testing

using deep

learning.

47

ii) Research

questions/problem

statements [EP6]

Test case

generation-

· Approach

· Address

·

CO2 Lorem Ipsum is

simply dummy text

of the printing and

typesetting

industry.

(i) Related works

[K8]

● Literature paper

review on current

automated testing

models for black

box and white

box

● Paper review

on deep

learning

methods to

automate the

generation of

test cases.

● Literature

review in the

i) Related works [EP1]

K5: Flowchart Design.

K6: Automation using deep

learning.

ii) Objectives [EP2, EP6,

EP7]

EP2:

Implementing a deep learning

model to prioritize test inputs

according to the importance of

the user’s perspective.

EP6:

Test case generation-

· Approach

· Address

· Effectiveness

EP7:

· Application

· Android drive

· Test data

· Trained data

· Deep learning

· Test label data

48

platform for

automated

android

application

testing using

deep learning.

· Expected result

· Appium

· Test result

iii) Planned Methodology

[EP2, EP6]

EP2:

Implementing a deep learning

model to prioritize test inputs

according to the importance of

the user’s perspective.

EP6:

Test case generation-

· Approach

· Address

· Effectiveness

CSE400-B

Program Outcomes:

PO2 (Problem Analysis): Analyze various aspects of the objectives for designing a

solution for the capstone project.

PO3 (Design/Development of Solutions): Design and develop solutions for the capstone

project that meet public health and safety, cultural, societal, and environmental

considerations.

PO5 (Modern Tool Usage): Identify and apply modern engineering and IT tools for the

design and development of the capstone project.

PO6 (The Engineer and Society): Assess and address societal, health, safety, legal, and

cultural aspects related to the implementation of the capstone project considering the

relevant professional and engineering practices and solutions.

49

CO Details Knowledge Profile (K) Engineering Problem

(EP)

CO3 Analyze various

aspects of the

objectives for

designing a solution

for the capstone

project.

(i) Problem Analysis [K1,

K2, K3, K4]

K1: To ensure the testing is

accurate.

K2: python, vscode,

tensorflow, kaggle for

training the model.

K3: Mobile Application

and software scheduling.

K4: Testing architecture

followed by consensus

mechanism like image

dataset of mobile

applications UI.

(i) Problem Analysis

[EP1, EP2, EP3, EP6,

EP7]

EP1:

K5: Model training,

image datasets, GUI

testing process.

K6: Testing through

code and deep learning

method.

EP2:

The Black Box and

White Box techniques

are broad ones that are

not only for AI. In

addition to their many

other applications, they

are used to create AI

models in addition to

developing and testing

traditional software.

CO4 Lorem Ipsum is

simply dummy text

of the printing and

typesetting industry.

(i) Design and

Implementation [K5]

We designed a UI for

sorting the datasets easily.

(i)Design and

Implementation [EP1,

EP2, EP4, EP5, EP6,

EP7]

50

 Implementing a deep

learning model to

prioritize test inputs

according to the

importance of the

user’s perspective.

EP6:

Test case generation-

· Approach

· Address

· Effectiveness

CO5 Lorem Ipsum is

simply dummy text

of the printing and

typesetting industry.

It has survived not

only five centuries,

but also the leap

into electronic

typesetting,

remaining

essentially

unchanged.

(i) Materials and Devices

[K6]

K6: Engineering Practice

(technology): TensorFlow, VS

code, Python, and Rico, the

mobile app datasets for building

data-driven design applications.

(i) Materials and

Devices [EP1, EP2, EP4,

EP5]

TensorFlow is an

open-source

framework

developed by

Google for deep

learning

applications, while

Python is used for

developing websites,

software, task

automation, data

analysis, and data

visualization.

Kaggle is an online

community of data

scientists and

machine learning.

CO6 Assess and address

societal, health,

(i) Social and

Environmental Impact

(i) Social and

Environmental

51

safety, legal, and

cultural aspects

related to the

implementation of

the capstone project

considering the

relevant

professional and

engineering

practices and

solutions. specimen

book.

of Engineering [K7]

K7: Comprehension of

engineering in society: This

will replace manual testing

with AI-powered automation,

making GUI testing simpler.

Impact of

Engineering [EP2,

EP5, EP6]

Visual GUI testing

(VGT) is more flexible

and resilient to GUI

modifications than earlier

high-level (GUI) test

automation techniques.

VGT is useful, adaptable,

and cost-effective, with

58 distinct CPLs and 26

categories.

CSE400-C

Program Outcomes:

PO7 (Environment and Sustainability): Analyze various aspects of the objectives for

designing a solution for the capstone project.

PO8 (Ethics): Design and develop solutions for the capstone project that meet public

health and safety, cultural, societal, and environmental considerations.

PO9 (Individual Work and Teamwork): Assess and address societal, health, safety,

legal, and cultural aspects related to the implementation of the capstone project considering

the relevant professional and engineering practices and solutions.

P10 (Communication): The main approach for this project would be an online gathering

via Google Meet. There was no communication breakdown because every project

participant was close to one another.

P11 (Project Management and Finance): We were always working on this project under

the direction of our supervisor. We have continued to use the Work Breakdown Structure

for project management. Each task had a time limit, and we completed them all by that

52

time. This is how we were able to complete our assignment on schedule. The project had

no significant costs. The project's participants self-funded any costs that were necessary.

P12 (Life-Long Learning): We have put the ideas we acquired in our prior classes into

practice in this project. We picked up a few more ideas while working on the project. Along

with these, we also learned some fundamental skills like problem-solving, critical thinking,

and communication that will be useful in the future.

CO Details Knowledge Profile (K)
Engineering Problem

(EP)

CO7 Identify and apply

modern engineering

and IT tools for the

design and

development of the

capstone project.

(i) Societal and

environmental contexts

[K7]

K7: Comprehension of

engineering in society:

This will replace manual

testing with AI-powered

automation, making GUI

testing simpler.

(i) Societal and

environmental contexts

[EP2, EP5, EP6]

EP2: Range of

conflicting

requirements: Social

and Environmental

Impact of Engineering

[EP2, EP5, EP6]

Visual GUI testing (VGT)

is more flexible and

resilient to GUI

modifications than earlier

high-level (GUI) test

automation techniques.

VGT is useful, adaptable,

and cost-effective, with

58 distinct CPLs and 26

categories.

53

CO8 Assess and address

societal, health, safety,

legal, and cultural

aspects related to the

implementation of the

capstone project

considering the

relevant professional

and engineering

practices and

solutions.

(i) Ethical principle and

practices [K7]

K7: Comprehension of

engineering in society:

We designed a UI for

sorting the datasets easily.

ring in society:

Materials and Devices

[EP1, EP2, EP4, EP5]

TensorFlow is an open-

source framework

developed by Google for

deep learning

applications, while

Python is used for

developing websites,

software, task

automation, data analysis,

and data visualization.

Kaggle is an online

community of data

scientists and machine

learning engineers,

C09 Identify and apply

modern engineering

and IT tools for the

design and

development of the

capstone project.

Materials and Devices

[K6]

TensorFlow, VS code,

Python, and Rico, the

mobile app datasets for

building data-driven

design applications.

CO10 We have an effective

report on the capstone

project. In the design

54

and implementation

section of the report,

we went into great

detail on the specific

design and

implementation

aspects of our project.

CO11 Given the size of the

project, it took a long

time to complete. Our

project work had been

scheduled. The ability

to keep on schedule

and submit the project

on time was one of the

most crucial aspects of

the project, which we

successfully

accomplished thanks

to our strong

teamwork.

CO12 We had to acquire new

concepts and apply

them in order to

employ the concepts

we used in this

experiment. For this

project, we were able

55

to combine the

exploration of fresh

ideas with more

established ones. Users

will be able to identify

the inflammatory skin

diseases with the aid

of this practical

knowledge application

in the finished

software program.

